Adapters
File size: 1,360 Bytes
70a6fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torch.nn as nn
import math

class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, n_heads):
        super(MultiHeadAttention, self).__init__()

        self.d_model = d_model
        self.n_heads = n_heads

        assert d_model % self.n_heads == 0
        self.head_dim = d_model // n_heads

        self.query = nn.Linear(d_model, d_model)
        self.key = nn.Linear(d_model, d_model)
        self.value = nn.Linear(d_model, d_model)

        self.fc_out = nn.Linear(d_model, d_model)

    def forward(self, query, key, value, mask=None):
        N = query.shape[0]
        Q = self.query(query)
        K = self.key(key)
        V = self.value(value)

        Q = Q.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2)
        K = K.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2)
        V = V.view(N, -1, self.n_heads, self.head_dim).transpose(1, 2)

        energy = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)

        if mask is not None:
            energy = energy.masked_fill(mask == 0, float('-1e20'))

        attention = torch.softmax(energy, dim=-1)
        out = torch.matmul(attention, V)

        out = out.transpose(1, 2).contiguous().view(N, -1, self.n_heads * self.head_dim)
        out = self.fc_out(out)

        return out