flux-test5 / handler.py
NoMoreCopyright's picture
Update handler.py
ecb0d64 verified
raw
history blame contribute delete
8.04 kB
import os
from typing import Any, Dict
from PIL import Image
from huggingface_inference_toolkit.logging import logger
from pymongo.mongo_client import MongoClient
from diffusers.utils import load_image
import numpy as np
import pandas as pd
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import numpy as np
import pandas as pd
import timm
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from simple_parsing import field
from timm.data import create_transform, resolve_data_config
from torch import Tensor, nn
from torch.nn import functional as F
HF_TOKEN = os.environ.get("HF_TOKEN", "")
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_REPO_MAP = {
"vit": "SmilingWolf/wd-vit-large-tagger-v3",
}
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
# convert to RGB/RGBA if not already (deals with palette images etc.)
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
# convert RGBA to RGB with white background
if image.mode == "RGBA":
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
return image
def pil_pad_square(image: Image.Image) -> Image.Image:
w, h = image.size
# get the largest dimension so we can pad to a square
px = max(image.size)
# pad to square with white background
canvas = Image.new("RGB", (px, px), (255, 255, 255))
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
return canvas
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
character: list[np.int64]
def load_labels_hf(
repo_id: str,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> LabelData:
try:
csv_path = hf_hub_download(
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
)
csv_path = Path(csv_path).resolve()
except HfHubHTTPError as e:
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
tag_data = LabelData(
names=df["name"].tolist(),
rating=list(np.where(df["category"] == 9)[0]),
general=list(np.where(df["category"] == 0)[0]),
character=list(np.where(df["category"] == 4)[0]),
)
return tag_data
def get_tags(
probs: Tensor,
labels: LabelData,
gen_threshold: float,
char_threshold: float,
):
# Convert indices+probs to labels
probs = list(zip(labels.names, probs.numpy()))
# First 4 labels are actually ratings
rating_labels = dict([probs[i] for i in labels.rating])
# General labels, pick any where prediction confidence > threshold
gen_labels = [probs[i] for i in labels.general]
gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
# Character labels, pick any where prediction confidence > threshold
char_labels = [probs[i] for i in labels.character]
char_labels = dict([x for x in char_labels if x[1] > char_threshold])
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
# Combine general and character labels, sort by confidence
combined_names = [x for x in gen_labels]
combined_names.extend([x for x in char_labels])
# Convert to a string suitable for use as a training caption
caption = ", ".join(combined_names)
taglist = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")
return caption, taglist, rating_labels, char_labels, gen_labels
@dataclass
class ScriptOptions:
image_file: Path = field(positional=True)
model: str = field(default="vit")
gen_threshold: float = field(default=0.35)
char_threshold: float = field(default=0.75)
class EndpointHandler:
def __init__(self, path=""):
self.opts = ScriptOptions
repo_id = MODEL_REPO_MAP.get(self.opts.model)
self.model: nn.Module = timm.create_model("hf-hub:" + repo_id).eval()
state_dict = timm.models.load_state_dict_from_hf(repo_id)
self.model.load_state_dict(state_dict)
self.labels: LabelData = load_labels_hf(repo_id=repo_id)
self.transform = create_transform(**resolve_data_config(self.model.pretrained_cfg, model=self.model))
# move model to GPU, if available
if torch_device.type != "cpu":
self.model = self.model.to(torch_device)
uri = os.environ.get("MongoDB", "")
self.client = MongoClient(uri)
self.db = self.client['nomorecopyright']
self.collection = self.db['imagerequests']
self.query = {"keywords": {"$exists": False}}
self.projection = {"_id": 0, "createdImage": 1}
def __call__(self, data: Dict[str, Any]) -> str:
logger.info(f"Received incoming request with {data=}")
if "inputs" in data and isinstance(data["inputs"], str):
prompt = data.pop("inputs")
else:
raise ValueError(
"Provided input body must contain either the key `inputs` or `prompt` with the"
" prompt to use for the image generation, and it needs to be a non-empty string."
)
start_index,limit_count=prompt.split(',')
start_index=int(start_index)
limit_count=int(limit_count)
logger.info(f"Start index: {start_index}, Limit count: {limit_count}")
data = list(self.collection.find(self.query).skip(start_index).limit(limit_count))
start_time=time.time()
for document in data:
try:
image=load_image(document.get('createdImage', 'https://nomorecopyright.com/default.jpg'))
# get image
# ensure image is RGB
img_input = pil_ensure_rgb(image)
# pad to square with white background
img_input = pil_pad_square(img_input)
# run the model's input transform to convert to tensor and rescale
inputs: Tensor = self.transform(img_input).unsqueeze(0)
# NCHW image RGB to BGR
inputs = inputs[:, [2, 1, 0]]
with torch.inference_mode():
# move model to GPU, if available
if torch_device.type != "cpu":
inputs = inputs.to(torch_device)
outputs = self.model.forward(inputs)
# apply the final activation function (timm doesn't support doing this internally)
outputs = F.sigmoid(outputs)
# move inputs, outputs, and model back to to cpu if we were on GPU
if torch_device.type != "cpu":
inputs = inputs.to("cpu")
outputs = outputs.to("cpu")
caption, taglist, ratings, character, general = get_tags(
probs=outputs.squeeze(0),
labels=self.labels,
gen_threshold=self.opts.gen_threshold,
char_threshold=self.opts.char_threshold,
)
results={**ratings, **character, **general}
results={key: float(value) for key, value in results.items()}
saveQuery = {"_id": document.get('_id')}
# Update operation to add keywords with confidence scores
update_result = self.collection.update_one(saveQuery , {'$set': {'keywords': results}})
except Exception as e:
logger.error(f"Error processing image: {e}")
end_time=time.time()
print(f"Time taken: {end_time-start_time:.2f} seconds")
return 'OK'