File size: 8,038 Bytes
4b67735
 
 
 
e6021fb
 
 
 
4b67735
2861775
 
 
e6021fb
2861775
 
 
 
 
 
 
 
 
 
 
e6021fb
2861775
 
 
 
 
 
 
 
 
 
 
 
 
e6021fb
 
 
2861775
e6021fb
 
2861775
 
 
 
 
 
 
 
e6021fb
 
2861775
 
 
 
 
 
e6021fb
 
2861775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6021fb
2861775
e6021fb
 
2861775
 
 
 
 
 
 
 
e6021fb
2861775
 
e6021fb
2861775
 
 
 
e6021fb
2861775
 
 
 
e6021fb
2861775
 
 
e6021fb
2861775
 
 
e6021fb
2861775
e6021fb
 
2861775
 
 
 
 
 
e6021fb
 
 
2861775
 
 
 
 
 
 
 
 
cdaa34d
2861775
cdaa34d
 
 
2861775
cdaa34d
e6021fb
4b67735
e6021fb
 
 
cc76e64
51b05a9
e6021fb
4b67735
 
 
 
 
 
 
 
 
 
e6021fb
72c4ebd
 
9b26d4e
ecb0d64
e6021fb
 
486a85e
fa6de1f
2861775
 
 
 
 
 
 
 
 
cdaa34d
 
 
 
 
 
 
 
 
 
 
2861775
 
 
 
 
e6021fb
2861775
 
cdaa34d
2861775
e6021fb
 
2861775
486a85e
 
e6021fb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
from typing import Any, Dict
from PIL import Image
from huggingface_inference_toolkit.logging import logger
from pymongo.mongo_client import MongoClient
from diffusers.utils import load_image
import numpy as np
import pandas as pd
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Optional

import numpy as np
import pandas as pd
import timm
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from simple_parsing import field
from timm.data import create_transform, resolve_data_config
from torch import Tensor, nn
from torch.nn import functional as F

HF_TOKEN = os.environ.get("HF_TOKEN", "")
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_REPO_MAP = {
    "vit": "SmilingWolf/wd-vit-large-tagger-v3",
}


def pil_ensure_rgb(image: Image.Image) -> Image.Image:
    # convert to RGB/RGBA if not already (deals with palette images etc.)
    if image.mode not in ["RGB", "RGBA"]:
        image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
    # convert RGBA to RGB with white background
    if image.mode == "RGBA":
        canvas = Image.new("RGBA", image.size, (255, 255, 255))
        canvas.alpha_composite(image)
        image = canvas.convert("RGB")
    return image


def pil_pad_square(image: Image.Image) -> Image.Image:
    w, h = image.size
    # get the largest dimension so we can pad to a square
    px = max(image.size)
    # pad to square with white background
    canvas = Image.new("RGB", (px, px), (255, 255, 255))
    canvas.paste(image, ((px - w) // 2, (px - h) // 2))
    return canvas


@dataclass
class LabelData:
    names: list[str]
    rating: list[np.int64]
    general: list[np.int64]
    character: list[np.int64]


def load_labels_hf(
    repo_id: str,
    revision: Optional[str] = None,
    token: Optional[str] = None,
) -> LabelData:
    try:
        csv_path = hf_hub_download(
            repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
        )
        csv_path = Path(csv_path).resolve()
    except HfHubHTTPError as e:
        raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e

    df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
    tag_data = LabelData(
        names=df["name"].tolist(),
        rating=list(np.where(df["category"] == 9)[0]),
        general=list(np.where(df["category"] == 0)[0]),
        character=list(np.where(df["category"] == 4)[0]),
    )

    return tag_data


def get_tags(
    probs: Tensor,
    labels: LabelData,
    gen_threshold: float,
    char_threshold: float,
):
    # Convert indices+probs to labels
    probs = list(zip(labels.names, probs.numpy()))

    # First 4 labels are actually ratings
    rating_labels = dict([probs[i] for i in labels.rating])

    # General labels, pick any where prediction confidence > threshold
    gen_labels = [probs[i] for i in labels.general]
    gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
    gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))

    # Character labels, pick any where prediction confidence > threshold
    char_labels = [probs[i] for i in labels.character]
    char_labels = dict([x for x in char_labels if x[1] > char_threshold])
    char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))

    # Combine general and character labels, sort by confidence
    combined_names = [x for x in gen_labels]
    combined_names.extend([x for x in char_labels])

    # Convert to a string suitable for use as a training caption
    caption = ", ".join(combined_names)
    taglist = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")

    return caption, taglist, rating_labels, char_labels, gen_labels


@dataclass
class ScriptOptions:
    image_file: Path = field(positional=True)
    model: str = field(default="vit")
    gen_threshold: float = field(default=0.35)
    char_threshold: float = field(default=0.75)

class EndpointHandler:
    def __init__(self, path=""):
        self.opts = ScriptOptions
        repo_id = MODEL_REPO_MAP.get(self.opts.model)

        self.model: nn.Module = timm.create_model("hf-hub:" + repo_id).eval()
        state_dict = timm.models.load_state_dict_from_hf(repo_id)
        self.model.load_state_dict(state_dict)

        self.labels: LabelData = load_labels_hf(repo_id=repo_id)

        self.transform = create_transform(**resolve_data_config(self.model.pretrained_cfg, model=self.model))

        # move model to GPU, if available
        if torch_device.type != "cpu":
            self.model = self.model.to(torch_device)

        uri = os.environ.get("MongoDB", "")
        self.client = MongoClient(uri)

        self.db = self.client['nomorecopyright']
        self.collection = self.db['imagerequests']

        self.query = {"keywords": {"$exists": False}}
        self.projection = {"_id": 0, "createdImage": 1}
        
    def __call__(self, data: Dict[str, Any]) -> str:
        logger.info(f"Received incoming request with {data=}")

        if "inputs" in data and isinstance(data["inputs"], str):
            prompt = data.pop("inputs")
        else:
            raise ValueError(
                "Provided input body must contain either the key `inputs` or `prompt` with the"
                " prompt to use for the image generation, and it needs to be a non-empty string."
            )
        start_index,limit_count=prompt.split(',')
        start_index=int(start_index)
        limit_count=int(limit_count)
        logger.info(f"Start index: {start_index}, Limit count: {limit_count}")
        data = list(self.collection.find(self.query).skip(start_index).limit(limit_count)) 
        start_time=time.time()
        for document in data:
            try:
                image=load_image(document.get('createdImage', 'https://nomorecopyright.com/default.jpg'))
                # get image
                # ensure image is RGB
                img_input = pil_ensure_rgb(image)
                # pad to square with white background
                img_input = pil_pad_square(img_input)
                # run the model's input transform to convert to tensor and rescale
                inputs: Tensor = self.transform(img_input).unsqueeze(0)
                # NCHW image RGB to BGR
                inputs = inputs[:, [2, 1, 0]]
                with torch.inference_mode():
                    # move model to GPU, if available
                    if torch_device.type != "cpu":
                        inputs = inputs.to(torch_device)
                    outputs = self.model.forward(inputs)
                    # apply the final activation function (timm doesn't support doing this internally)
                    outputs = F.sigmoid(outputs)
                    # move inputs, outputs, and model back to to cpu if we were on GPU
                    if torch_device.type != "cpu":
                        inputs = inputs.to("cpu")
                        outputs = outputs.to("cpu")
                caption, taglist, ratings, character, general = get_tags(
                    probs=outputs.squeeze(0),
                    labels=self.labels,
                    gen_threshold=self.opts.gen_threshold,
                    char_threshold=self.opts.char_threshold,
                )

                results={**ratings, **character, **general}
                results={key: float(value) for key, value in results.items()}

                saveQuery = {"_id": document.get('_id')}
                # Update operation to add keywords with confidence scores
                update_result = self.collection.update_one(saveQuery , {'$set': {'keywords': results}})
            except Exception as e:
                logger.error(f"Error processing image: {e}")
        end_time=time.time()
        print(f"Time taken: {end_time-start_time:.2f} seconds")
        return 'OK'