videomae-base-finetuned-deception-dataset-v2
This model is a fine-tuned version of NiklasTUM/videomae-base-finetuned-deception-dataset on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3303
- Accuracy: 0.6790
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 14
- eval_batch_size: 14
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 28
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 252
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1031 | 1.0 | 22 | 1.8863 | 0.5185 |
0.125 | 2.0 | 44 | 0.9140 | 0.8765 |
0.0816 | 3.0 | 66 | 1.2803 | 0.7037 |
0.097 | 4.0 | 88 | 1.3666 | 0.6914 |
0.0607 | 5.0 | 110 | 2.0708 | 0.5432 |
0.0848 | 6.0 | 132 | 1.5366 | 0.6049 |
0.0727 | 7.0 | 154 | 1.4673 | 0.6420 |
0.0716 | 8.0 | 176 | 1.3291 | 0.6914 |
0.1157 | 9.0 | 198 | 1.7054 | 0.5802 |
0.0738 | 10.0 | 220 | 1.2064 | 0.7160 |
0.0604 | 11.0 | 242 | 1.2631 | 0.6790 |
0.0509 | 11.4651 | 252 | 1.3303 | 0.6790 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.1.0+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NiklasTUM/videomae-base-finetuned-deception-dataset-v2
Base model
MCG-NJU/videomae-base