videomae-base-finetuned-deception-dataset-v2

This model is a fine-tuned version of NiklasTUM/videomae-base-finetuned-deception-dataset on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3303
  • Accuracy: 0.6790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 14
  • eval_batch_size: 14
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 28
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 252

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1031 1.0 22 1.8863 0.5185
0.125 2.0 44 0.9140 0.8765
0.0816 3.0 66 1.2803 0.7037
0.097 4.0 88 1.3666 0.6914
0.0607 5.0 110 2.0708 0.5432
0.0848 6.0 132 1.5366 0.6049
0.0727 7.0 154 1.4673 0.6420
0.0716 8.0 176 1.3291 0.6914
0.1157 9.0 198 1.7054 0.5802
0.0738 10.0 220 1.2064 0.7160
0.0604 11.0 242 1.2631 0.6790
0.0509 11.4651 252 1.3303 0.6790

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.1.0+cu121
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
14
Safetensors
Model size
86.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NiklasTUM/videomae-base-finetuned-deception-dataset-v2