GPT-2 Tiny Shakespeare Model

This is a small autoregressive language model based on the Transformer architecture trained on the Tiny Shakespeare dataset.

Model Description

The model is a custom implementation of a TransformerDecoderModel, which uses a decoder-only architecture similar to GPT-2. It was trained on the Tiny Shakespeare dataset to generate text in the style of William Shakespeare.

How to Use

To generate text with this model, you can load it and the tokenizer as follows:

from transformers import GPT2LMHeadModel, GPT2Tokenizer

model = GPT2LMHeadModel.from_pretrained('NataliaH/gpt2-tiny-shakespeare')
tokenizer = GPT2Tokenizer.from_pretrained('NataliaH/gpt2-tiny-shakespeare')

input_text = 'To be or not to be'
inputs = tokenizer(input_text, return_tensors='pt')
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Tags

  • Transformer
  • GPT-2
  • Tiny Shakespeare
  • Language Model
  • Text Generation
  • Autoregressive

Training Details

  • Epochs: 3
  • Batch size: 4
  • Learning Rate: 5e-5
  • Loss Function: Cross-Entropy Loss
  • Optimizer: AdamW

License

This model is licensed under the MIT license.

Downloads last month
16
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train NataliaH/gpt2-tiny-shakespeare