C2MT / models /CNN.py
LanXiaoPang613
Add files via upload
9294feb unverified
import math
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
class HiddenLayer(nn.Module):
def __init__(self, input_size, output_size):
super(HiddenLayer, self).__init__()
self.fc = nn.Linear(input_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
return self.relu(self.fc(x))
class VNet(nn.Module):
def __init__(self, hidden_size=100, num_layers=1):
super(VNet, self).__init__()
self.first_hidden_layer = HiddenLayer(1, hidden_size)
self.rest_hidden_layers = nn.Sequential(*[HiddenLayer(hidden_size, hidden_size) for _ in range(num_layers - 1)])
self.output_layer = nn.Linear(hidden_size, 1)
def forward(self, x):
x = self.first_hidden_layer(x)
x = self.rest_hidden_layers(x)
x = self.output_layer(x)
return torch.sigmoid(x)
def call_bn(bn, x):
return bn(x)
class CNN(nn.Module):
def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25, top_bn=False):
self.dropout_rate = dropout_rate
self.top_bn = top_bn
super(CNN, self).__init__()
self.c1=nn.Conv2d(input_channel,128,kernel_size=3,stride=1, padding=1)
self.c2=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1)
self.c3=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1)
self.c4=nn.Conv2d(128,256,kernel_size=3,stride=1, padding=1)
self.c5=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1)
self.c6=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1)
self.c7=nn.Conv2d(256,512,kernel_size=3,stride=1, padding=0)
self.c8=nn.Conv2d(512,256,kernel_size=3,stride=1, padding=0)
self.c9=nn.Conv2d(256,128,kernel_size=3,stride=1, padding=0)
self.l_c1=nn.Linear(128,n_outputs)
self.bn1=nn.BatchNorm2d(128)
self.bn2=nn.BatchNorm2d(128)
self.bn3=nn.BatchNorm2d(128)
self.bn4=nn.BatchNorm2d(256)
self.bn5=nn.BatchNorm2d(256)
self.bn6=nn.BatchNorm2d(256)
self.bn7=nn.BatchNorm2d(512)
self.bn8=nn.BatchNorm2d(256)
self.bn9=nn.BatchNorm2d(128)
def forward(self, x,):
h=x
h=self.c1(h)
h=F.leaky_relu(call_bn(self.bn1, h), negative_slope=0.01)
h=self.c2(h)
h=F.leaky_relu(call_bn(self.bn2, h), negative_slope=0.01)
h=self.c3(h)
h=F.leaky_relu(call_bn(self.bn3, h), negative_slope=0.01)
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=F.dropout2d(h, p=self.dropout_rate)
h=self.c4(h)
h=F.leaky_relu(call_bn(self.bn4, h), negative_slope=0.01)
h=self.c5(h)
h=F.leaky_relu(call_bn(self.bn5, h), negative_slope=0.01)
h=self.c6(h)
h=F.leaky_relu(call_bn(self.bn6, h), negative_slope=0.01)
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=F.dropout2d(h, p=self.dropout_rate)
h=self.c7(h)
h=F.leaky_relu(call_bn(self.bn7, h), negative_slope=0.01)
h=self.c8(h)
h=F.leaky_relu(call_bn(self.bn8, h), negative_slope=0.01)
h=self.c9(h)
h=F.leaky_relu(call_bn(self.bn9, h), negative_slope=0.01)
h=F.avg_pool2d(h, kernel_size=h.data.shape[2])
h = h.view(h.size(0), h.size(1))
logit=self.l_c1(h)
if self.top_bn:
logit=call_bn(self.bn_c1, logit)
return logit
class CNN_bak(nn.Module):
def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25):
self.dropout_rate = dropout_rate
super(CNN_bak, self).__init__()
#block1
self.conv1 = nn.Conv2d(input_channel, 128, kernel_size=3, stride=1, padding=1)
self.bn1=nn.BatchNorm2d(128)
self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.bn2=nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.bn3=nn.BatchNorm2d(128)
#block2
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn4=nn.BatchNorm2d(256)
self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.bn5=nn.BatchNorm2d(256)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.bn6=nn.BatchNorm2d(256)
#block3
self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=0)
self.bn7=nn.BatchNorm2d(512)
self.conv8 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=0)
self.bn8=nn.BatchNorm2d(256)
self.conv9 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0)
self.bn9=nn.BatchNorm2d(128)
self.pool = nn.MaxPool2d(2, 2)
self.avgpool = nn.AvgPool2d(kernel_size=2)
self.fc=nn.Linear(128,n_outputs)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
#block1
x=F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01)
x=F.leaky_relu(self.bn2(self.conv2(x)), negative_slope=0.01)
x=F.leaky_relu(self.bn3(self.conv3(x)), negative_slope=0.01)
x=self.pool(x)
x=F.dropout2d(x, p=self.dropout_rate)
#block2
x=F.leaky_relu(self.bn4(self.conv4(x)), negative_slope=0.01)
x=F.leaky_relu(self.bn5(self.conv5(x)), negative_slope=0.01)
x=F.leaky_relu(self.bn6(self.conv6(x)), negative_slope=0.01)
x=self.pool(x)
x=F.dropout2d(x, p=self.dropout_rate)
#block3
x=F.leaky_relu(self.bn7(self.conv7(x)), negative_slope=0.01)
x=F.leaky_relu(self.bn8(self.conv8(x)), negative_slope=0.01)
x=F.leaky_relu(self.bn9(self.conv9(x)), negative_slope=0.01)
x=self.avgpool(x)
x = x.view(x.size(0), x.size(1))
x=self.fc(x)
return x
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=14):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(pretrained=False, **kwargs):
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
return model