|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.init as init |
|
import torch.nn.functional as F |
|
import torch.utils.model_zoo as model_zoo |
|
|
|
class HiddenLayer(nn.Module): |
|
def __init__(self, input_size, output_size): |
|
super(HiddenLayer, self).__init__() |
|
self.fc = nn.Linear(input_size, output_size) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
return self.relu(self.fc(x)) |
|
|
|
|
|
class VNet(nn.Module): |
|
def __init__(self, hidden_size=100, num_layers=1): |
|
super(VNet, self).__init__() |
|
self.first_hidden_layer = HiddenLayer(1, hidden_size) |
|
self.rest_hidden_layers = nn.Sequential(*[HiddenLayer(hidden_size, hidden_size) for _ in range(num_layers - 1)]) |
|
self.output_layer = nn.Linear(hidden_size, 1) |
|
|
|
def forward(self, x): |
|
x = self.first_hidden_layer(x) |
|
x = self.rest_hidden_layers(x) |
|
x = self.output_layer(x) |
|
return torch.sigmoid(x) |
|
|
|
def call_bn(bn, x): |
|
return bn(x) |
|
|
|
class CNN(nn.Module): |
|
def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25, top_bn=False): |
|
self.dropout_rate = dropout_rate |
|
self.top_bn = top_bn |
|
super(CNN, self).__init__() |
|
self.c1=nn.Conv2d(input_channel,128,kernel_size=3,stride=1, padding=1) |
|
self.c2=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1) |
|
self.c3=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1) |
|
self.c4=nn.Conv2d(128,256,kernel_size=3,stride=1, padding=1) |
|
self.c5=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1) |
|
self.c6=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1) |
|
self.c7=nn.Conv2d(256,512,kernel_size=3,stride=1, padding=0) |
|
self.c8=nn.Conv2d(512,256,kernel_size=3,stride=1, padding=0) |
|
self.c9=nn.Conv2d(256,128,kernel_size=3,stride=1, padding=0) |
|
self.l_c1=nn.Linear(128,n_outputs) |
|
self.bn1=nn.BatchNorm2d(128) |
|
self.bn2=nn.BatchNorm2d(128) |
|
self.bn3=nn.BatchNorm2d(128) |
|
self.bn4=nn.BatchNorm2d(256) |
|
self.bn5=nn.BatchNorm2d(256) |
|
self.bn6=nn.BatchNorm2d(256) |
|
self.bn7=nn.BatchNorm2d(512) |
|
self.bn8=nn.BatchNorm2d(256) |
|
self.bn9=nn.BatchNorm2d(128) |
|
|
|
def forward(self, x,): |
|
h=x |
|
h=self.c1(h) |
|
h=F.leaky_relu(call_bn(self.bn1, h), negative_slope=0.01) |
|
h=self.c2(h) |
|
h=F.leaky_relu(call_bn(self.bn2, h), negative_slope=0.01) |
|
h=self.c3(h) |
|
h=F.leaky_relu(call_bn(self.bn3, h), negative_slope=0.01) |
|
h=F.max_pool2d(h, kernel_size=2, stride=2) |
|
h=F.dropout2d(h, p=self.dropout_rate) |
|
|
|
h=self.c4(h) |
|
h=F.leaky_relu(call_bn(self.bn4, h), negative_slope=0.01) |
|
h=self.c5(h) |
|
h=F.leaky_relu(call_bn(self.bn5, h), negative_slope=0.01) |
|
h=self.c6(h) |
|
h=F.leaky_relu(call_bn(self.bn6, h), negative_slope=0.01) |
|
h=F.max_pool2d(h, kernel_size=2, stride=2) |
|
h=F.dropout2d(h, p=self.dropout_rate) |
|
|
|
h=self.c7(h) |
|
h=F.leaky_relu(call_bn(self.bn7, h), negative_slope=0.01) |
|
h=self.c8(h) |
|
h=F.leaky_relu(call_bn(self.bn8, h), negative_slope=0.01) |
|
h=self.c9(h) |
|
h=F.leaky_relu(call_bn(self.bn9, h), negative_slope=0.01) |
|
h=F.avg_pool2d(h, kernel_size=h.data.shape[2]) |
|
|
|
h = h.view(h.size(0), h.size(1)) |
|
logit=self.l_c1(h) |
|
if self.top_bn: |
|
logit=call_bn(self.bn_c1, logit) |
|
return logit |
|
|
|
|
|
class CNN_bak(nn.Module): |
|
def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25): |
|
self.dropout_rate = dropout_rate |
|
super(CNN_bak, self).__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(input_channel, 128, kernel_size=3, stride=1, padding=1) |
|
self.bn1=nn.BatchNorm2d(128) |
|
self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) |
|
self.bn2=nn.BatchNorm2d(128) |
|
self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) |
|
self.bn3=nn.BatchNorm2d(128) |
|
|
|
|
|
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) |
|
self.bn4=nn.BatchNorm2d(256) |
|
self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) |
|
self.bn5=nn.BatchNorm2d(256) |
|
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) |
|
self.bn6=nn.BatchNorm2d(256) |
|
|
|
|
|
self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=0) |
|
self.bn7=nn.BatchNorm2d(512) |
|
self.conv8 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=0) |
|
self.bn8=nn.BatchNorm2d(256) |
|
self.conv9 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0) |
|
self.bn9=nn.BatchNorm2d(128) |
|
|
|
self.pool = nn.MaxPool2d(2, 2) |
|
self.avgpool = nn.AvgPool2d(kernel_size=2) |
|
|
|
self.fc=nn.Linear(128,n_outputs) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
|
|
|
|
x=F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01) |
|
x=F.leaky_relu(self.bn2(self.conv2(x)), negative_slope=0.01) |
|
x=F.leaky_relu(self.bn3(self.conv3(x)), negative_slope=0.01) |
|
x=self.pool(x) |
|
x=F.dropout2d(x, p=self.dropout_rate) |
|
|
|
|
|
x=F.leaky_relu(self.bn4(self.conv4(x)), negative_slope=0.01) |
|
x=F.leaky_relu(self.bn5(self.conv5(x)), negative_slope=0.01) |
|
x=F.leaky_relu(self.bn6(self.conv6(x)), negative_slope=0.01) |
|
x=self.pool(x) |
|
x=F.dropout2d(x, p=self.dropout_rate) |
|
|
|
|
|
x=F.leaky_relu(self.bn7(self.conv7(x)), negative_slope=0.01) |
|
x=F.leaky_relu(self.bn8(self.conv8(x)), negative_slope=0.01) |
|
x=F.leaky_relu(self.bn9(self.conv9(x)), negative_slope=0.01) |
|
x=self.avgpool(x) |
|
|
|
x = x.view(x.size(0), x.size(1)) |
|
x=self.fc(x) |
|
return x |
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, num_classes=14): |
|
self.inplanes = 64 |
|
super(ResNet, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.avgpool = nn.AvgPool2d(7, stride=1) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.fc(x) |
|
return x |
|
|
|
def resnet18(pretrained=False, **kwargs): |
|
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) |
|
return model |