import math import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F import torch.utils.model_zoo as model_zoo class HiddenLayer(nn.Module): def __init__(self, input_size, output_size): super(HiddenLayer, self).__init__() self.fc = nn.Linear(input_size, output_size) self.relu = nn.ReLU() def forward(self, x): return self.relu(self.fc(x)) class VNet(nn.Module): def __init__(self, hidden_size=100, num_layers=1): super(VNet, self).__init__() self.first_hidden_layer = HiddenLayer(1, hidden_size) self.rest_hidden_layers = nn.Sequential(*[HiddenLayer(hidden_size, hidden_size) for _ in range(num_layers - 1)]) self.output_layer = nn.Linear(hidden_size, 1) def forward(self, x): x = self.first_hidden_layer(x) x = self.rest_hidden_layers(x) x = self.output_layer(x) return torch.sigmoid(x) def call_bn(bn, x): return bn(x) class CNN(nn.Module): def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25, top_bn=False): self.dropout_rate = dropout_rate self.top_bn = top_bn super(CNN, self).__init__() self.c1=nn.Conv2d(input_channel,128,kernel_size=3,stride=1, padding=1) self.c2=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1) self.c3=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1) self.c4=nn.Conv2d(128,256,kernel_size=3,stride=1, padding=1) self.c5=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1) self.c6=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1) self.c7=nn.Conv2d(256,512,kernel_size=3,stride=1, padding=0) self.c8=nn.Conv2d(512,256,kernel_size=3,stride=1, padding=0) self.c9=nn.Conv2d(256,128,kernel_size=3,stride=1, padding=0) self.l_c1=nn.Linear(128,n_outputs) self.bn1=nn.BatchNorm2d(128) self.bn2=nn.BatchNorm2d(128) self.bn3=nn.BatchNorm2d(128) self.bn4=nn.BatchNorm2d(256) self.bn5=nn.BatchNorm2d(256) self.bn6=nn.BatchNorm2d(256) self.bn7=nn.BatchNorm2d(512) self.bn8=nn.BatchNorm2d(256) self.bn9=nn.BatchNorm2d(128) def forward(self, x,): h=x h=self.c1(h) h=F.leaky_relu(call_bn(self.bn1, h), negative_slope=0.01) h=self.c2(h) h=F.leaky_relu(call_bn(self.bn2, h), negative_slope=0.01) h=self.c3(h) h=F.leaky_relu(call_bn(self.bn3, h), negative_slope=0.01) h=F.max_pool2d(h, kernel_size=2, stride=2) h=F.dropout2d(h, p=self.dropout_rate) h=self.c4(h) h=F.leaky_relu(call_bn(self.bn4, h), negative_slope=0.01) h=self.c5(h) h=F.leaky_relu(call_bn(self.bn5, h), negative_slope=0.01) h=self.c6(h) h=F.leaky_relu(call_bn(self.bn6, h), negative_slope=0.01) h=F.max_pool2d(h, kernel_size=2, stride=2) h=F.dropout2d(h, p=self.dropout_rate) h=self.c7(h) h=F.leaky_relu(call_bn(self.bn7, h), negative_slope=0.01) h=self.c8(h) h=F.leaky_relu(call_bn(self.bn8, h), negative_slope=0.01) h=self.c9(h) h=F.leaky_relu(call_bn(self.bn9, h), negative_slope=0.01) h=F.avg_pool2d(h, kernel_size=h.data.shape[2]) h = h.view(h.size(0), h.size(1)) logit=self.l_c1(h) if self.top_bn: logit=call_bn(self.bn_c1, logit) return logit class CNN_bak(nn.Module): def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25): self.dropout_rate = dropout_rate super(CNN_bak, self).__init__() #block1 self.conv1 = nn.Conv2d(input_channel, 128, kernel_size=3, stride=1, padding=1) self.bn1=nn.BatchNorm2d(128) self.conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.bn2=nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.bn3=nn.BatchNorm2d(128) #block2 self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.bn4=nn.BatchNorm2d(256) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.bn5=nn.BatchNorm2d(256) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.bn6=nn.BatchNorm2d(256) #block3 self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=0) self.bn7=nn.BatchNorm2d(512) self.conv8 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=0) self.bn8=nn.BatchNorm2d(256) self.conv9 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0) self.bn9=nn.BatchNorm2d(128) self.pool = nn.MaxPool2d(2, 2) self.avgpool = nn.AvgPool2d(kernel_size=2) self.fc=nn.Linear(128,n_outputs) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): #block1 x=F.leaky_relu(self.bn1(self.conv1(x)), negative_slope=0.01) x=F.leaky_relu(self.bn2(self.conv2(x)), negative_slope=0.01) x=F.leaky_relu(self.bn3(self.conv3(x)), negative_slope=0.01) x=self.pool(x) x=F.dropout2d(x, p=self.dropout_rate) #block2 x=F.leaky_relu(self.bn4(self.conv4(x)), negative_slope=0.01) x=F.leaky_relu(self.bn5(self.conv5(x)), negative_slope=0.01) x=F.leaky_relu(self.bn6(self.conv6(x)), negative_slope=0.01) x=self.pool(x) x=F.dropout2d(x, p=self.dropout_rate) #block3 x=F.leaky_relu(self.bn7(self.conv7(x)), negative_slope=0.01) x=F.leaky_relu(self.bn8(self.conv8(x)), negative_slope=0.01) x=F.leaky_relu(self.bn9(self.conv9(x)), negative_slope=0.01) x=self.avgpool(x) x = x.view(x.size(0), x.size(1)) x=self.fc(x) return x def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=14): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet18(pretrained=False, **kwargs): model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) return model