C2MT / dataloader_animal10N.py
LanXiaoPang613
Add files via upload
3a7e930 unverified
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import random
import numpy as np
from PIL import Image
import json
import torch
import os
import matplotlib
def unpickle(file):
fo = open(file, 'rb').read()
size = 64 * 64 * 3 + 1
for i in range(50000):
arr = np.fromstring(fo[i * size:(i + 1) * size], dtype=np.uint8)
lab = np.identity(10)[arr[0]]
img = arr[1:].reshape((3, 64, 64)).transpose((1, 2, 0))
return img, lab
class animal_dataset(Dataset):
def __init__(self, root, transform, mode, pred=[], path=[], probability=[], num_class=10):
self.root = root
self.transform = transform
self.mode = mode
self.train_dir = root + '/training/'
self.test_dir = root + '/testing/'
train_imgs = os.listdir(self.train_dir)
test_imgs = os.listdir(self.test_dir)
self.test_data = []
self.test_labels = []
noise_file1 = './training_batch.json'
noise_file2 = './testing_batch.json'
if mode == 'test':
if os.path.exists(noise_file2):
dict = json.load(open(noise_file2, "r"))
self.test_labels = dict['data']
self.test_data = dict['label']
else:
for img in test_imgs:
self.test_data.append(self.test_dir+img)
self.test_labels.append(int(img[0]))
dicts = {}
dicts['data'] = self.test_data
dicts['label'] = self.test_labels
# json.dump(dicts, open(noise_file2, "w"))
else:
if os.path.exists(noise_file1):
dict = json.load(open(noise_file1, "r"))
train_data = dict['data']
train_labels = dict['label']
else:
train_data = []
train_labels = {}
for img in train_imgs:
img_path = self.train_dir+img
train_data.append(img_path)
train_labels[img_path] = (int(img[0]))
dicts = {}
dicts['data'] = train_data
dicts['label'] = train_labels
# json.dump(dicts, open(noise_file1, "w"))
if self.mode == "all":
self.train_data = train_data
self.train_labels = train_labels
elif self.mode == "labeled":
pred_idx = pred.nonzero()[0]
train_img = path
self.train_data = [train_img[i] for i in pred_idx]
self.probability = probability[pred_idx]
# self.train_labels = train_labels[pred_idx]
print("%s data has a size of %d" % (self.mode, len(self.train_data)))
self.train_labels = train_labels
elif self.mode == "unlabeled":
pred_idx = (1 - pred).nonzero()[0]
train_img = path
self.train_data = [train_img[i] for i in pred_idx]
self.probability = probability[pred_idx]
# self.train_labels = train_labels[pred_idx]
print("%s data has a size of %d" % (self.mode, len(self.train_data)))
self.train_labels = train_labels
def __getitem__(self, index):
if self.mode == 'labeled':
img_path = self.train_data[index]
target = self.train_labels[img_path]
prob = self.probability[index]
image = Image.open(img_path).convert('RGB')
img1 = self.transform(image)
img2 = self.transform(image)
return img1, img2, target, prob
elif self.mode == 'unlabeled':
img_path = self.train_data[index]
image = Image.open(img_path).convert('RGB')
img1 = self.transform(image)
img2 = self.transform(image)
return img1, img2
elif self.mode == 'all':
img_path = self.train_data[index]
target = self.train_labels[img_path]
image = Image.open(img_path).convert('RGB')
img = self.transform(image)
return img, target,img_path
elif self.mode == 'test':
img_path = self.test_data[index]
target = self.test_labels[index]
image = Image.open(img_path).convert('RGB')
img = self.transform(image)
return img, target
def __len__(self):
if self.mode == 'test':
return len(self.test_data)
else:
return len(self.train_data)
class animal_dataloader():
def __init__(self, root='E:/2_Dataset_All/Animal-10N', batch_size=32, num_workers=0):
self.batch_size = batch_size
self.num_workers = num_workers
self.root = root
self.transform_train = transforms.Compose([
transforms.Resize(64),
transforms.RandomCrop(64),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.6959, 0.6537, 0.6371), (0.3113, 0.3192, 0.3214)),
])
self.transform_test = transforms.Compose([
# transforms.Resize(64),
# transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.6959, 0.6537, 0.6371), (0.3113, 0.3192, 0.3214)),
])
def run(self, mode, pred=[], prob=[], paths=[]):
if mode == 'warmup':
warmup_dataset = animal_dataset(self.root, transform=self.transform_train, mode='all')
warmup_loader = DataLoader(
dataset=warmup_dataset,
batch_size=self.batch_size * 2,
shuffle=True,
num_workers=self.num_workers,
pin_memory=True)
return warmup_loader
elif mode == 'train':
labeled_dataset = animal_dataset(self.root, transform=self.transform_train, mode='labeled', pred=pred, path=paths,
probability=prob)
labeled_loader = DataLoader(
dataset=labeled_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
pin_memory=True)
unlabeled_dataset = animal_dataset(self.root, transform=self.transform_train, mode='unlabeled', pred=pred,path=paths,
probability=prob)
unlabeled_loader = DataLoader(
dataset=unlabeled_dataset,
batch_size=int(self.batch_size),
shuffle=True,
num_workers=self.num_workers,
pin_memory=True)
return labeled_loader, unlabeled_loader
elif mode == 'eval_train':
eval_dataset = animal_dataset(self.root, transform=self.transform_test, mode='all')
eval_loader = DataLoader(
dataset=eval_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
pin_memory=True)
return eval_loader
elif mode == 'test':
test_dataset = animal_dataset(self.root, transform=self.transform_test, mode='test')
test_loader = DataLoader(
dataset=test_dataset,
batch_size=1000,
shuffle=False,
num_workers=self.num_workers,
pin_memory=True)
return test_loader
# if __name__ == '__main__':
# loader = animal_dataloader()
# train_loader = loader.run('warmup')
# import matplotlib.pyplot as plt
# for batch_idx, (inputs, labels, idx, img_path) in enumerate(train_loader):
# print(img_path[0])
# plt.figure(dpi=300)
# # plt.imshow(inputs[0])
# plt.imshow(inputs[0].reshape(64, 64, 3))
# plt.show()
# plt.close()
# print(inputs.shape())
# print(idx)
# print(labels, len(labels))
# # print(train_loader.dataset.__len__())