LanXiaoPang613
commited on
Add files via upload
Browse files- Train_animal10N.py +5 -5
- dataloader_animal10N.py +1 -1
Train_animal10N.py
CHANGED
@@ -26,7 +26,7 @@ parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature
|
|
26 |
parser.add_argument('--num_epochs', default=300, type=int)
|
27 |
parser.add_argument('--id', default='animal10N')
|
28 |
# parser.add_argument('--data_path', default='E:/Dataset_All/clothing1M/images', type=str, help='path to dataset')
|
29 |
-
parser.add_argument('--data_path', default='C:/Users/
|
30 |
parser.add_argument('--seed', default=123)
|
31 |
parser.add_argument('--gpuid', default=0, type=int)
|
32 |
parser.add_argument('--num_class', default=10, type=int)
|
@@ -140,7 +140,7 @@ def warmup(net, optimizer, dataloader):
|
|
140 |
|
141 |
sys.stdout.write('\r')
|
142 |
sys.stdout.write('|Warm-up: Iter[%3d/%3d]\t CE-loss: %.4f Conf-Penalty: %.4f'
|
143 |
-
% (
|
144 |
sys.stdout.flush()
|
145 |
|
146 |
|
@@ -258,7 +258,7 @@ class NegEntropy(object):
|
|
258 |
|
259 |
|
260 |
def create_model():
|
261 |
-
use_cnn =
|
262 |
if use_cnn:
|
263 |
model = CNN()
|
264 |
model = model.cuda()
|
@@ -327,9 +327,9 @@ if resume_epoch > 0:
|
|
327 |
|
328 |
for epoch in range(resume_epoch, args.num_epochs + 1):
|
329 |
lr = args.lr
|
330 |
-
if
|
331 |
lr /= 10
|
332 |
-
elif epoch >=
|
333 |
lr /= 10
|
334 |
# if 15 <= epoch:
|
335 |
# lr /= 2
|
|
|
26 |
parser.add_argument('--num_epochs', default=300, type=int)
|
27 |
parser.add_argument('--id', default='animal10N')
|
28 |
# parser.add_argument('--data_path', default='E:/Dataset_All/clothing1M/images', type=str, help='path to dataset')
|
29 |
+
parser.add_argument('--data_path', default='C:/Users/USSTz/Desktop/Animal-10N', type=str, help='path to dataset')
|
30 |
parser.add_argument('--seed', default=123)
|
31 |
parser.add_argument('--gpuid', default=0, type=int)
|
32 |
parser.add_argument('--num_class', default=10, type=int)
|
|
|
140 |
|
141 |
sys.stdout.write('\r')
|
142 |
sys.stdout.write('|Warm-up: Iter[%3d/%3d]\t CE-loss: %.4f Conf-Penalty: %.4f'
|
143 |
+
% (batch_idx + 1, num_batches, loss.item(), penalty.item()))
|
144 |
sys.stdout.flush()
|
145 |
|
146 |
|
|
|
258 |
|
259 |
|
260 |
def create_model():
|
261 |
+
use_cnn = True
|
262 |
if use_cnn:
|
263 |
model = CNN()
|
264 |
model = model.cuda()
|
|
|
327 |
|
328 |
for epoch in range(resume_epoch, args.num_epochs + 1):
|
329 |
lr = args.lr
|
330 |
+
if 50 <= epoch < 100:
|
331 |
lr /= 10
|
332 |
+
elif epoch >= 130:
|
333 |
lr /= 10
|
334 |
# if 15 <= epoch:
|
335 |
# lr /= 2
|
dataloader_animal10N.py
CHANGED
@@ -70,8 +70,8 @@ class animal_dataset(Dataset):
|
|
70 |
self.train_data = [train_img[i] for i in pred_idx]
|
71 |
self.probability = probability[pred_idx]
|
72 |
# self.train_labels = train_labels[pred_idx]
|
73 |
-
self.train_labels = train_labels
|
74 |
print("%s data has a size of %d" % (self.mode, len(self.train_data)))
|
|
|
75 |
elif self.mode == "unlabeled":
|
76 |
pred_idx = (1 - pred).nonzero()[0]
|
77 |
train_img = path
|
|
|
70 |
self.train_data = [train_img[i] for i in pred_idx]
|
71 |
self.probability = probability[pred_idx]
|
72 |
# self.train_labels = train_labels[pred_idx]
|
|
|
73 |
print("%s data has a size of %d" % (self.mode, len(self.train_data)))
|
74 |
+
self.train_labels = train_labels
|
75 |
elif self.mode == "unlabeled":
|
76 |
pred_idx = (1 - pred).nonzero()[0]
|
77 |
train_img = path
|