LanXiaoPang613 commited on
Commit
3a7e930
·
unverified ·
1 Parent(s): 9294feb

Add files via upload

Browse files
Files changed (2) hide show
  1. Train_animal10N.py +5 -5
  2. dataloader_animal10N.py +1 -1
Train_animal10N.py CHANGED
@@ -26,7 +26,7 @@ parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature
26
  parser.add_argument('--num_epochs', default=300, type=int)
27
  parser.add_argument('--id', default='animal10N')
28
  # parser.add_argument('--data_path', default='E:/Dataset_All/clothing1M/images', type=str, help='path to dataset')
29
- parser.add_argument('--data_path', default='C:/Users/Administrator/Desktop/DatasetAll/Animal-10N', type=str, help='path to dataset')
30
  parser.add_argument('--seed', default=123)
31
  parser.add_argument('--gpuid', default=0, type=int)
32
  parser.add_argument('--num_class', default=10, type=int)
@@ -140,7 +140,7 @@ def warmup(net, optimizer, dataloader):
140
 
141
  sys.stdout.write('\r')
142
  sys.stdout.write('|Warm-up: Iter[%3d/%3d]\t CE-loss: %.4f Conf-Penalty: %.4f'
143
- % (2*(batch_idx + 1), num_batches, loss.item(), penalty.item()))
144
  sys.stdout.flush()
145
 
146
 
@@ -258,7 +258,7 @@ class NegEntropy(object):
258
 
259
 
260
  def create_model():
261
- use_cnn = False
262
  if use_cnn:
263
  model = CNN()
264
  model = model.cuda()
@@ -327,9 +327,9 @@ if resume_epoch > 0:
327
 
328
  for epoch in range(resume_epoch, args.num_epochs + 1):
329
  lr = args.lr
330
- if 100 <= epoch < 150:
331
  lr /= 10
332
- elif epoch >= 150:
333
  lr /= 10
334
  # if 15 <= epoch:
335
  # lr /= 2
 
26
  parser.add_argument('--num_epochs', default=300, type=int)
27
  parser.add_argument('--id', default='animal10N')
28
  # parser.add_argument('--data_path', default='E:/Dataset_All/clothing1M/images', type=str, help='path to dataset')
29
+ parser.add_argument('--data_path', default='C:/Users/USSTz/Desktop/Animal-10N', type=str, help='path to dataset')
30
  parser.add_argument('--seed', default=123)
31
  parser.add_argument('--gpuid', default=0, type=int)
32
  parser.add_argument('--num_class', default=10, type=int)
 
140
 
141
  sys.stdout.write('\r')
142
  sys.stdout.write('|Warm-up: Iter[%3d/%3d]\t CE-loss: %.4f Conf-Penalty: %.4f'
143
+ % (batch_idx + 1, num_batches, loss.item(), penalty.item()))
144
  sys.stdout.flush()
145
 
146
 
 
258
 
259
 
260
  def create_model():
261
+ use_cnn = True
262
  if use_cnn:
263
  model = CNN()
264
  model = model.cuda()
 
327
 
328
  for epoch in range(resume_epoch, args.num_epochs + 1):
329
  lr = args.lr
330
+ if 50 <= epoch < 100:
331
  lr /= 10
332
+ elif epoch >= 130:
333
  lr /= 10
334
  # if 15 <= epoch:
335
  # lr /= 2
dataloader_animal10N.py CHANGED
@@ -70,8 +70,8 @@ class animal_dataset(Dataset):
70
  self.train_data = [train_img[i] for i in pred_idx]
71
  self.probability = probability[pred_idx]
72
  # self.train_labels = train_labels[pred_idx]
73
- self.train_labels = train_labels
74
  print("%s data has a size of %d" % (self.mode, len(self.train_data)))
 
75
  elif self.mode == "unlabeled":
76
  pred_idx = (1 - pred).nonzero()[0]
77
  train_img = path
 
70
  self.train_data = [train_img[i] for i in pred_idx]
71
  self.probability = probability[pred_idx]
72
  # self.train_labels = train_labels[pred_idx]
 
73
  print("%s data has a size of %d" % (self.mode, len(self.train_data)))
74
+ self.train_labels = train_labels
75
  elif self.mode == "unlabeled":
76
  pred_idx = (1 - pred).nonzero()[0]
77
  train_img = path