File size: 20,580 Bytes
d3cde70 3a7e930 d3cde70 3a7e930 d3cde70 3a7e930 d3cde70 3a7e930 d3cde70 3a7e930 d3cde70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.models as models
from models.CNN import CNN
import random
import os
import argparse
import numpy as np
import dataloader_animal10N as animal_dataloader
from sklearn.mixture import GaussianMixture
import copy
parser = argparse.ArgumentParser(description='PyTorch Clothing1M Training')
parser.add_argument('--batch_size', default=128, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--alpha', default=4, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=0, type=float, help='weight for unsupervised loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=300, type=int)
parser.add_argument('--id', default='animal10N')
# parser.add_argument('--data_path', default='E:/Dataset_All/clothing1M/images', type=str, help='path to dataset')
parser.add_argument('--data_path', default='C:/Users/USSTz/Desktop/Animal-10N', type=str, help='path to dataset')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--num_class', default=10, type=int)
# parser.add_argument('--num_batches', default=1000, type=int)
args = parser.parse_args()
torch.cuda.set_device(args.gpuid)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Training
def train(epoch, net, net2, optimizer, labeled_trainloader, unlabeled_trainloader):
net.train()
net2.eval() # fix one network and train the other
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset) // args.batch_size) + 1
for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(labeled_trainloader):
try:
inputs_u, inputs_u2 = unlabeled_train_iter.__next__()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2 = unlabeled_train_iter.__next__()
batch_size = inputs_x.size(0)
# Transform label to one-hot
labels_x = torch.zeros(batch_size, args.num_class).scatter_(1, labels_x.view(-1, 1), 1)
w_x = w_x.view(-1, 1).type(torch.FloatTensor)
inputs_x, inputs_x2, labels_x, w_x = inputs_x.cuda(), inputs_x2.cuda(), labels_x.cuda(), w_x.cuda()
inputs_u, inputs_u2 = inputs_u.cuda(), inputs_u2.cuda()
with torch.no_grad():
# label co-guessing of unlabeled samples
outputs_u11 = net(inputs_u)
outputs_u12 = net(inputs_u2)
outputs_u21 = net2(inputs_u)
outputs_u22 = net2(inputs_u2)
pu = (torch.softmax(outputs_u11, dim=1) + torch.softmax(outputs_u12, dim=1) +
torch.softmax(outputs_u21, dim=1) + torch.softmax(outputs_u22, dim=1)) / 4
ptu = pu ** (1 / args.T) # temparature sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
targets_u = targets_u.detach()
# label refinement of labeled samples
outputs_x = net(inputs_x)
outputs_x2 = net(inputs_x2)
px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
px = w_x * labels_x + (1 - w_x) * px
ptx = px ** (1 / args.T) # temparature sharpening
targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize
targets_x = targets_x.detach()
# mixmatch
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1 - l)
all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a[:batch_size * 2] + (1 - l) * input_b[:batch_size * 2]
mixed_target = l * target_a[:batch_size * 2] + (1 - l) * target_b[:batch_size * 2]
logits = net(mixed_input)
Lx = -torch.mean(torch.sum(F.log_softmax(logits, dim=1) * mixed_target, dim=1))
# regularization
prior = torch.ones(args.num_class) / args.num_class
prior = prior.cuda()
pred_mean = torch.softmax(logits, dim=1).mean(0)
penalty = torch.sum(prior * torch.log(prior / pred_mean))
loss = Lx + penalty
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('Animal10N | Epoch [%3d/%3d] Iter[%3d/%3d]\t Labeled loss: %.4f '
% (epoch, args.num_epochs, batch_idx + 1, num_iter, Lx.item()))
sys.stdout.flush()
def warmup(net, optimizer, dataloader):
net.train()
num_batches = 50000/args.batch_size
for batch_idx, (inputs, labels, path) in enumerate(dataloader):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = net(inputs)
loss = CEloss(outputs, labels)
penalty = conf_penalty(outputs)
L = loss + penalty
L.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('|Warm-up: Iter[%3d/%3d]\t CE-loss: %.4f Conf-Penalty: %.4f'
% (batch_idx + 1, num_batches, loss.item(), penalty.item()))
sys.stdout.flush()
def val(net, val_loader, best_acc, w_glob=None):
net.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(val_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = net(inputs)
_, predicted = torch.max(outputs, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100. * correct / total
print("\n| Validation\t Net%d Acc: %.2f%%" % (k, acc))
if acc > best_acc[k - 1]:
best_acc[k - 1] = acc
print('| Saving Best Net%d ...' % k)
save_point = './checkpoint/%s_net%d.pth.tar' % (args.id, k)
torch.save(net.state_dict(), save_point)
return acc
def test(epoch, net1, net2, test_loader, best_acc, w_glob=None):
if w_glob is None:
net1.eval()
net2.eval()
correct = 0
correct2 = 0
correct1 = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
outputs2 = net2(inputs)
outputs = outputs1 + outputs2
_, predicted = torch.max(outputs, 1)
_, predicted1 = torch.max(outputs1, 1)
_, predicted2 = torch.max(outputs2, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
correct1 += predicted1.eq(targets).cpu().sum().item()
correct2 += predicted2.eq(targets).cpu().sum().item()
acc = 100. * correct / total
acc1 = 100. * correct / total
acc2 = 100. * correct / total
if best_acc < acc:
best_acc = acc
print(
"\n| Ensemble network Test Epoch #%d\t Accuracy: %.2f, Accuracy1: %.2f, Accuracy2: %.2f, best_acc: %.2f%%\n" % (
epoch, acc, acc1, acc2, best_acc))
log.write('ensemble_Epoch:%d Accuracy:%.2f, Accuracy1: %.2f, Accuracy2: %.2f, best_acc: %.2f\n' % (
epoch, acc, acc1, acc2, best_acc))
log.flush()
else:
net1_w_bak = net1.state_dict()
net1.load_state_dict(w_glob)
net1.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
_, predicted = torch.max(outputs1, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100. * correct / total
if best_acc < acc:
best_acc = acc
print("\n| Global network Test Epoch #%d\t Accuracy: %.2f, best_acc: %.2f%%\n" % (epoch, acc, best_acc))
log.write('global_Epoch:%d Accuracy:%.2f, best_acc: %.2f\n' % (epoch, acc, best_acc))
log.flush()
# 恢复权重
net1.load_state_dict(net1_w_bak)
return best_acc
def eval_train(epoch, model):
model.eval()
num_samples = eval_loader.dataset.__len__()
losses = torch.zeros(num_samples)
paths = []
n = 0
with torch.no_grad():
for batch_idx, (inputs, targets, path) in enumerate(eval_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = CE(outputs, targets)
for b in range(inputs.size(0)):
losses[n] = loss[b]
paths.append(path[b])
n += 1
sys.stdout.write('\r')
sys.stdout.write('| Evaluating loss Iter %3d\t' % (batch_idx))
sys.stdout.flush()
losses = (losses - losses.min()) / (losses.max() - losses.min())
losses = losses.reshape(-1, 1)
gmm = GaussianMixture(n_components=2, max_iter=10, reg_covar=5e-4, tol=1e-2)
gmm.fit(losses)
prob = gmm.predict_proba(losses)
prob = prob[:, gmm.means_.argmin()]
return prob, paths
class NegEntropy(object):
def __call__(self, outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log() * probs, dim=1))
def create_model():
use_cnn = True
if use_cnn:
model = CNN()
model = model.cuda()
else:
model = models.vgg19_bn(pretrained=False)
model.classifier._modules['6'] = nn.Linear(4096, 10)
model = model.cuda()
return model
def FedAvg(w):
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
for i in range(1, len(w)):
w_avg[k] += w[i][k]
# 只考虑iid noise的话,每个client训练样本数一样,所以不用做nk/n
w_avg[k] = torch.div(w_avg[k], len(w))
return w_avg
log = open('./checkpoint/%s.txt' % args.id, 'w')
log.flush()
loader = animal_dataloader.animal_dataloader(root=args.data_path, batch_size=args.batch_size, num_workers=0)
print('| Building net')
net1 = create_model()
net2 = create_model()
cudnn.benchmark = True
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-3)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-3)
CE = nn.CrossEntropyLoss(reduction='none')
CEloss = nn.CrossEntropyLoss()
conf_penalty = NegEntropy()
local_round = 5
balance_crit = 'median' # 'median'
exp_path = './checkpoint/c2mt_animal10N'
boot_loader = None
w_glob = None
best_en_acc = 0.
best_gl_acc = 0.
resume_epoch = 0
warm_up = 10
if resume_epoch > 0:
snapLast = exp_path + str(resume_epoch - 1) + "_global_model.pth"
global_state = torch.load(snapLast)
# 先更新还是后跟新
w_glob = global_state
net1.load_state_dict(global_state)
net2.load_state_dict(global_state)
# if True:
# snapLast = exp_path + "0_1_model.pth"
# global_state = torch.load(snapLast)
# net1.load_state_dict(global_state)
# snapLast = exp_path + "0_2_model.pth"
# global_state = torch.load(snapLast)
# net2.load_state_dict(global_state)
# test_loader = loader.run('test')
# best_en_acc = test(0, net1, net2, test_loader, best_en_acc)
for epoch in range(resume_epoch, args.num_epochs + 1):
lr = args.lr
if 50 <= epoch < 100:
lr /= 10
elif epoch >= 130:
lr /= 10
# if 15 <= epoch:
# lr /= 2
for param_group in optimizer1.param_groups:
param_group['lr'] = lr
for param_group in optimizer2.param_groups:
param_group['lr'] = lr
local_weights = []
if epoch < warm_up: # warm up
train_loader = loader.run('warmup')
print('Warmup Net1')
warmup(net1, optimizer1, train_loader)
train_loader = loader.run('warmup')
print('\nWarmup Net2')
warmup(net2, optimizer2, train_loader)
if epoch == (warm_up - 1):
snapLast = exp_path + str(epoch) + "_1_model.pth"
torch.save(net1.state_dict(), snapLast)
snapLast = exp_path + str(epoch) + "_2_model.pth"
torch.save(net1.state_dict(), snapLast)
local_weights.append(net1.state_dict())
local_weights.append(net2.state_dict())
w_glob = FedAvg(local_weights)
else:
if epoch != warm_up:
net1.load_state_dict(w_glob)
net2.load_state_dict(w_glob)
for rou in range(local_round):
print('\n==== net 1 evaluate next epoch training data loss ====')
eval_loader = loader.run('eval_train') # evaluate training data loss for next epoch
prob1, paths1 = eval_train(epoch, net1)
print('\n==== net 2 evaluate next epoch training data loss ====')
eval_loader = loader.run('eval_train')
prob2, paths2 = eval_train(epoch, net2)
pred1 = (prob1 > args.p_threshold) # divide dataset
pred2 = (prob2 > args.p_threshold)
non_zero_idx = pred1.nonzero()[0].tolist()
aaa = len(non_zero_idx)
if balance_crit == "max" or balance_crit == "min" or balance_crit == "median":
num_clean_per_class = np.zeros(args.num_class)
ppp = np.array(paths1)[non_zero_idx].tolist()
target_label = np.array([eval_loader.dataset.train_labels[it] for it in ppp])
# target_label = np.array(eval_loader.dataset.train_labels[paths1])[non_zero_idx]
for i in range(args.num_class):
idx_class = np.where(target_label == i)[0]
num_clean_per_class[i] = len(idx_class)
if balance_crit == "max":
num_samples2select_class = np.max(num_clean_per_class)
elif balance_crit == "min":
num_samples2select_class = np.min(num_clean_per_class)
elif balance_crit == "median":
num_samples2select_class = np.median(num_clean_per_class)
for i in range(args.num_class):
idx_class = np.where(np.array([eval_loader.dataset.train_labels[it] for it in paths1]) == i)[0]
cur_num = num_clean_per_class[i]
idx_class2 = non_zero_idx
if num_samples2select_class > cur_num:
remian_idx = list(set(idx_class.tolist()) - set(idx_class2))
idx = list(range(len(remian_idx)))
random.shuffle(idx)
num_app = int(num_samples2select_class - cur_num)
idx = idx[:num_app]
for j in idx:
non_zero_idx.append(remian_idx[j])
non_zero_idx = np.array(non_zero_idx).reshape(-1, )
bbb = len(non_zero_idx)
num_per_class2 = []
for i in range(10):
temp = \
np.where(np.array([eval_loader.dataset.train_labels[it] for it in paths1])[non_zero_idx.tolist()] == i)[
0]
num_per_class2.append(len(temp))
print('\npred1 appended num per class:', num_per_class2, aaa, bbb)
idx_per_class = np.zeros_like(pred1).astype(bool)
for i in non_zero_idx:
idx_per_class[i] = True
pred1 = idx_per_class
non_aaa = pred1.nonzero()[0].tolist()
assert len(non_aaa) == len(non_zero_idx)
non_zero_idx2 = pred2.nonzero()[0].tolist()
aaa = len(non_zero_idx2)
if balance_crit == "max" or balance_crit == "min" or balance_crit == "median":
num_clean_per_class = np.zeros(args.num_class)
ppp = np.array(paths2)[non_zero_idx].tolist()
target_label = np.array([eval_loader.dataset.train_labels[it] for it in ppp])
for i in range(args.num_class):
idx_class = np.where(target_label == i)[0]
num_clean_per_class[i] = len(idx_class)
if balance_crit == "max":
num_samples2select_class = np.max(num_clean_per_class)
elif balance_crit == "min":
num_samples2select_class = np.min(num_clean_per_class)
elif balance_crit == "median":
num_samples2select_class = np.median(num_clean_per_class)
for i in range(args.num_class):
idx_class = np.where(np.array([eval_loader.dataset.train_labels[it] for it in paths1]) == i)[0]
cur_num = num_clean_per_class[i]
idx_class2 = non_zero_idx2
if num_samples2select_class > cur_num:
remian_idx = list(set(idx_class.tolist()) - set(idx_class2))
idx = list(range(len(remian_idx)))
random.shuffle(idx)
num_app = int(num_samples2select_class - cur_num)
idx = idx[:num_app]
for j in idx:
non_zero_idx2.append(remian_idx[j])
non_zero_idx2 = np.array(non_zero_idx2).reshape(-1, )
bbb = len(non_zero_idx2)
num_per_class2 = []
for i in range(10):
temp = np.where(
np.array([eval_loader.dataset.train_labels[it] for it in paths1])[non_zero_idx2.tolist()] == i)[0]
num_per_class2.append(len(temp))
print('\npred2 appended num per class:', num_per_class2, aaa, bbb)
idx_per_class2 = np.zeros_like(pred2).astype(bool)
for i in non_zero_idx2:
idx_per_class2[i] = True
pred2 = idx_per_class2
non_aaa = pred2.nonzero()[0].tolist()
assert len(non_aaa) == len(non_zero_idx2)
print(f'round={rou}/{local_round}, dmix selection, Train Net1')
labeled_trainloader, unlabeled_trainloader = loader.run('train', pred2, prob2, paths=paths2) # co-divide
train(epoch, net1, net2, optimizer1, labeled_trainloader, unlabeled_trainloader) # train net1
print(f'\nround={rou}/{local_round}, dmix selection, Train Net2')
labeled_trainloader, unlabeled_trainloader = loader.run('train', pred1, prob1, paths=paths1) # co-divide
train(epoch, net2, net1, optimizer2, labeled_trainloader, unlabeled_trainloader) # train net2
test_loader = loader.run('test')
if rou != local_round-1:
best_en_acc = test(epoch, net1, net2, test_loader, best_en_acc)
# best_gl_acc = test(epoch, net1, net2, test_loader, best_gl_acc, w_glob=w_glob)
print(f'c2m, get global network\n')
local_weights.append(net1.state_dict())
local_weights.append(net2.state_dict())
w_glob = FedAvg(local_weights)
if epoch % 1 == 0:
snapLast = exp_path + str(epoch) + "_global_model.pth"
torch.save(w_glob, snapLast)
test_loader = loader.run('test')
best_en_acc = test(epoch, net1, net2, test_loader, best_en_acc)
best_gl_acc = test(epoch, net1, net2, test_loader, best_gl_acc, w_glob=w_glob)
|