Single-Pass Scanner

This repository contains model checkpoint for Single-Pass Scanner

The model architecture is built upon mamba, and is trained from mamba2-1.3b

Usage

We highly recommend creating a new conda environment first:

conda create -n mamba_retriever python=3.10.14
conda activate mamba_retriever

Then, run the following in your terminal:

git clone https://github.com/state-spaces/mamba.git
conda install cudatoolkit==11.8 -c nvidia
pip install -r requirements.txt
pip3 install torch==2.1.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install accelerate -U
cd mamba
pip install .

Next, download and install the following two files from https://github.com/state-spaces/mamba/releases and https://github.com/Dao-AILab/causal-conv1d/releases:

mamba_ssm-2.2.2+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
causal_conv1d-1.4.0+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

You can install them using

pip install mamba_ssm-2.2.2+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install causal_conv1d-1.4.0+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

Evaluation

All evaluation code and details are available at Single-Pass Scanner Github

Downloads last month
10
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for MambaRetriever/SPScanner-1.3b

Finetuned
(1)
this model