Mallard74's picture
Update README.md
8cfbe82 verified
metadata
library_name: transformers
base_model: microsoft/codebert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: codebert-base
    results: []

codebert-base

This model is a fine-tuned version of microsoft/codebert-base on the xCodeEval dataset, more precisely on the multi-tag classification task.. It achieves the following results on the evaluation set:

  • Loss: 0.2756
  • F1 Macro: 0.3907
  • F1 Micro: 0.6159
  • Roc Auc: 0.8944
  • Accuracy: 0.4118
  • Hamming Loss: 0.1088

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Roc Auc Accuracy Hamming Loss
No log 1.0 287 0.3148 0.1532 0.4274 0.8593 0.2510 0.1314
0.3402 2.0 574 0.2830 0.3484 0.5897 0.8873 0.3765 0.1132
0.3402 3.0 861 0.2756 0.3907 0.6159 0.8944 0.4118 0.1088

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2
  • Datasets 3.0.0
  • Tokenizers 0.19.1