Mallard74's picture
Update README.md
c2eac58 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
  - code
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased
    results: []
datasets:
  - NTU-NLP-sg/xCodeEval
language:
  - en
pipeline_tag: text-classification

bert-base-uncased

This model is a fine-tuned version of bert-base-uncased on the xCodeEval dataset, more precisely on the multi-tag classification task.

It achieves the following results on the evaluation set:

  • Loss: 0.2880
  • F1 Macro: 0.3305
  • F1 Micro: 0.6076
  • Roc Auc: 0.8857
  • Accuracy: 0.4314
  • Hamming Loss: 0.1064

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Roc Auc Accuracy Hamming Loss
No log 1.0 287 0.3286 0.1706 0.4810 0.8514 0.3137 0.1270
0.3527 2.0 574 0.2958 0.3283 0.6029 0.8760 0.4196 0.1059
0.3527 3.0 861 0.2880 0.3305 0.6076 0.8857 0.4314 0.1064

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2
  • Datasets 3.0.0
  • Tokenizers 0.19.1