|
--- |
|
base_model: |
|
- Qwen/Qwen2.5-VL-7B-Instruct |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- multi-modal |
|
- large-language-model |
|
--- |
|
|
|
<p align="center"> |
|
<img src="https://github.com/LengSicong/MMR1/blob/main/assets/logo.png?raw=true" width="150" style="margin-bottom: 0.2;"/> |
|
<p> |
|
|
|
<h3 align="center"> |
|
MMR1: Advancing the Frontiers of Multimodal Reasoning</a></h3> |
|
<h5 align="center"> If you like our project, please give us a star ⭐ on <a href="https://github.com/LengSicong/MMR1">Github</a> to support us. 🙏🙏 </h2> |
|
|
|
## 📰 News |
|
* **[2025.03.11]** 🔥🔥 Release MMR1-Math-v0, achieving SOTA with only 6k data! |
|
|
|
## Links |
|
Code: https://github.com/LengSicong/MMR1 |
|
|
|
This model was presented in the paper [LMM-R1: Empowering 3B LMMs with Strong Reasoning Abilities Through Two-Stage Rule-Based RL](https://arxiv.org/abs/2503.07536). Code can be found at https://github.com/LengSicong/MMR1 |
|
|
|
## Model Description |
|
MMR1-Math-v0-7B is a Large Multimodal Model specialized in mathematical tasks. Remarkably, MMR1-Math-v0-7B achieves state-of-the-art performance among open-source 7B multimodal models, competing effectively even against proprietary models with significantly larger parameter sizes—all trained using only 6k carefully curated data instances. |
|
|
|
### Key Highlights: |
|
|
|
- **SOTA Performance**: Sets a new **state-of-the-art** benchmark on math-related multimodal tasks among open-source 7B models. |
|
|
|
- **Minimal Training Data**: Remarkably achieves top-tier performance with just **6k** high-quality samples from **public training datasets**. |
|
|
|
- **Efficient Training with GRPO**: 6 hours of RL training with 64 H100s for 15 epochs. |
|
|
|
- **Public and High-Quality Data**: Publicly sourced datasets, rigorously filtered and balanced across both difficulty and mathematical problem types. |
|
|
|
- **Balanced Data Strategy**: Uniform sampling of data based on both task difficulty (filtering out overly simple problems) and mathematical reasoning diversity. |
|
|
|
|
|
## Evaluation Results |
|
|
|
We evaluated our model using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit/tree/main) on four mathematical reasoning benchmarks: MathVista_MINI, MathVision, LogicVista, and MathVerse_MINI. |
|
|
|
We also include results on the MathVerse_MINI_Vision_Only_cot (MathVerse_V) subset to maintain consistency with the VLMEvalKit leaderboard. The table below compares our model's performance against various open-source and proprietary models. |
|
|
|
| Model | size | MathVista | MathVision | LogicVista | MathVerse | MathVerse_V | |
|
|-------|:----:|:--------------:|:----------:|:----------:|:--------------:|:-------------------:| |
|
| **Close-sourced** | | | | | | | |
|
| [GPT-4o 1120](https://openai.com/index/gpt-4o-system-card/) | - | 60.0 | 31.2 | 52.8 | 40.6 | - | |
|
| [Gemini-2.0-flash](https://deepmind.google/technologies/gemini/flash/) | - | 70.4 | 43.6 | 52.3 | 47.8 | - | |
|
| [Claude3.7-Sonnet](https://www.anthropic.com/news/claude-3-7-sonnet) | - | 66.8 | 41.9 | 58.2 | 46.7 | - | |
|
| **R1-related** | | | | | | | |
|
| [LLaVA-CoT](https://github.com/PKU-YuanGroup/LLaVA-CoT) | 11B | 52.5 | 19.9 | 39.6 | 22.6 | - | |
|
| [Open-R1-Multimodal](https://github.com/EvolvingLMMs-Lab/open-r1-multimodal) | 7B | 60.6 | - | - | - | - | |
|
| [Mulberry](https://github.com/HJYao00/Mulberry) | 7B | 63.1 | - | - | - | - | |
|
| [LMM-R1](https://arxiv.org/abs/2503.07536) | 3B | 63.2 | 26.4 | - | - | 41.6 | |
|
| [R1-Onevision](https://github.com/Fancy-MLLM/R1-Onevision?tab=readme-ov-file) | 7B | - | 26.2 | - | - | 44.1 | |
|
| [MM-Eureka](https://github.com/ModalMinds/MM-EUREKA) | 8B | 67.1 | 22.2 | - | - | 40.4 | |
|
| [MM-Eureka](https://github.com/ModalMinds/MM-EUREKA) | 38B | 64.2 | 26.6 | - | - | 48.9 | |
|
| **Open-sourced** | | | | | | | |
|
| [Ovis2-8b](https://github.com/AIDC-AI/Ovis) | 8B | 71.8 | 25.9 | 39.4 | 42.3 | - | |
|
| [MiniCPM-o-2.6](https://github.com/OpenBMB/MiniCPM-o) | 8B | **71.9** | 21.7 | 36.0 | 35.0 | - | |
|
| [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) (official) | 7B | 68.2 | 25.4 | 47.9 | 41.1 | - | |
|
| [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) (reproduced) | 7B | 67.5 | 25.6 | 46.8 | 42.5 | 46.9 | |
|
| **Ours** | | | | | | | |
|
| **MMR1-math-v0** | 7B | 71.0 | **30.2** | **50.8** | **45.1** | **49.8** | |
|
|
|
|
|
|
|
### Quick Start |
|
```python |
|
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
# default: Load the model on the available device(s) |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
"MMR1/MMR1-Math-v0-7B", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
device_map="auto", |
|
) |
|
# default processer |
|
processor = AutoProcessor.from_pretrained("MMR1/MMR1-Math-v0-7B") |
|
# Example input |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "path/to/image.jpeg", |
|
}, |
|
{"type": "text", "text": "Describe this image."}, |
|
], |
|
} |
|
] |
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
``` |
|
<details> |
|
<summary>Batch inference</summary> |
|
|
|
```python |
|
# Sample messages for batch inference |
|
messages1 = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": "file:///path/to/image1.jpg"}, |
|
{"type": "image", "image": "file:///path/to/image2.jpg"}, |
|
{"type": "text", "text": "What are the common elements in these pictures?"}, |
|
], |
|
} |
|
] |
|
messages2 = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
# Combine messages for batch processing |
|
messages = [messages1, messages2] |
|
# Preparation for batch inference |
|
texts = [ |
|
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) |
|
for msg in messages |
|
] |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=texts, |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
# Batch Inference |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_texts = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_texts) |
|
``` |
|
</details> |
|
|
|
|
|
## Citation |
|
|
|
If you find MMR1 useful for your research and applications, please cite using this BibTeX: |
|
|
|
```bibtex |
|
@misc{MMR1-Math2025, |
|
title={MMR1: Advancing the Frontiers of Multimodal Reasoning}, |
|
author={Sicong Leng*, Jing Wang*, Jiaxi Li*, Hao Zhang*, Zhiqiang Hu, Boqiang Zhang, Hang Zhang, Yuming Jiang, Xin Li, Fan Wang, Yu Rong, Aixin Sun†, Shijian Lu†}, |
|
year={2025}, |
|
howpublished={\url{https://github.com/LengSicong/MMR1}}, |
|
} |
|
``` |