This is a 3bit AutoRound GPTQ version of Mistral-Large-Instruct-2407. This conversion used model-*.safetensors.

This quantized model needs at least ~ 50GB + context (~5GB) VRAM. I quantized it so that it could fit 64GB VRAM.

Quantization script (it takes around 520 GB RAM and A40 GPU 48GB around 20 hours to convert):

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "mistralai/Mistral-Large-Instruct-2407"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_name)

from auto_round import AutoRound

bits, group_size, sym = 3, 128, True

autoround = AutoRound(model, tokenizer, nsamples=256, iters=512, low_gpu_mem_usage=True, batch_size=4, bits=bits, group_size=group_size, sym=sym,
                     device='cuda')
autoround.quantize()
output_dir = "./Mistral-Large-Instruct-2407-3bit"
autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)

Evals using lm-eval-harness.

example command:
# !pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git auto-gptq optimum
m="VPTQ-community/Mistral-Large-Instruct-2407-v8-k65536-256-woft"
!lm_eval --model hf --model_args pretrained={m},dtype=auto --tasks wikitext  --num_fewshot 0 --batch_size 1 --output_path ./eval/

hf (pretrained=MLDataScientist/Mistral-Large-Instruct-2407-GPTQ-3bit,dtype=auto), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 2

Tasks Version Filter n-shot Metric Value Stderr
wikitext 2 none 0 bits_per_byte ↓ 0.4103 ± N/A
none 0 byte_perplexity ↓ 1.3290 ± N/A
none 0 word_perplexity ↓ 4.5765 ± N/A

vs 3bit VPTQ hf (pretrained=VPTQ-community/Mistral-Large-Instruct-2407-v8-k65536-256-woft,dtype=auto), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 1

Tasks Version Filter n-shot Metric Value Stderr
wikitext 2 none 0 bits_per_byte ↓ 0.4017 ± N/A
none 0 byte_perplexity ↓ 1.3211 ± N/A
none 0 word_perplexity ↓ 4.4324 ± N/A

vs 4bit GPTQ: hf (pretrained=ModelCloud/Mistral-Large-Instruct-2407-gptq-4bit,dtype=auto), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 1:

Tasks Version Filter n-shot Metric Value Stderr
wikitext 2 none 0 bits_per_byte ↓ 0.3536 ± N/A
none 0 byte_perplexity ↓ 1.2777 ± N/A
none 0 word_perplexity ↓ 3.7082 ± N/A

vs 4bit VPTQ hf (pretrained=VPTQ-community/Mistral-Large-Instruct-2407-v8-k65536-65536-woft,dtype=auto), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 1

Tasks Version Filter n-shot Metric Value Stderr
wikitext 2 none 0 bits_per_byte ↓ 0.3415 ± N/A
none 0 byte_perplexity ↓ 1.2671 ± N/A
none 0 word_perplexity ↓ 3.5463 ± N/A

vs exl2 4bpw (I think the tests are different)

Wikitext C4 FineWeb Max VRAM
EXL2 4.00 bpw 2.885 6.484 6.246 60.07 GB
Downloads last month
3
Safetensors
Model size
13.3B params
Tensor type
FP16
·
I32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MLDataScientist/Mistral-Large-Instruct-2407-GPTQ-3bit

Quantized
(22)
this model