Phone-Call Intent Detection for Diner Reservations
Collection
6 items
•
Updated
A binary intent classification model fine-tuned from ckiplab/albert-base-chinese
on the Luigi/dinercall-intent
dataset. This model identifies whether a Chinese restaurant phone call contains a reservation intent (label=1
) or not (label=0
).
ckiplab/albert-base-chinese
0
: No intent to book a table1
: Intent to make a reservationThis model is designed for voice AI assistants in restaurants to automatically identify reservation intents from spoken or transcribed customer sentences.
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("Luigi/albert-base-chinese-dinercall-intent")
model = AutoModelForSequenceClassification.from_pretrained("Luigi/albert-base-chinese-dinercall-intent")
inputs = tokenizer("你好,我想訂位,今天晚上七點兩位", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted = torch.argmax(logits, dim=-1).item()
print(f"Prediction: {'Reservation intent' if predicted == 1 else 'No intent'}")
Base model
ckiplab/albert-base-chinese