albert-base-chinese-dinercall-intent

A binary intent classification model fine-tuned from ckiplab/albert-base-chinese on the Luigi/dinercall-intent dataset. This model identifies whether a Chinese restaurant phone call contains a reservation intent (label=1) or not (label=0).

Model Details

  • Base model: ckiplab/albert-base-chinese
  • Task: Binary intent classification
  • Language: Traditional Chinese
  • Labels:
    • 0: No intent to book a table
    • 1: Intent to make a reservation

Use Cases

This model is designed for voice AI assistants in restaurants to automatically identify reservation intents from spoken or transcribed customer sentences.

Example Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("Luigi/albert-base-chinese-dinercall-intent")
model = AutoModelForSequenceClassification.from_pretrained("Luigi/albert-base-chinese-dinercall-intent")

inputs = tokenizer("你好,我想訂位,今天晚上七點兩位", return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits
    predicted = torch.argmax(logits, dim=-1).item()

print(f"Prediction: {'Reservation intent' if predicted == 1 else 'No intent'}")
Downloads last month
66
Safetensors
Model size
10.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Luigi/albert-base-chinese-dinercall-intent

Finetuned
(2)
this model

Dataset used to train Luigi/albert-base-chinese-dinercall-intent

Space using Luigi/albert-base-chinese-dinercall-intent 1

Collection including Luigi/albert-base-chinese-dinercall-intent

Evaluation results