SentenceTransformer based on FacebookAI/roberta-base
This is a sentence-transformers model finetuned from FacebookAI/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("LorMolf/mnrl-toole-overlap-roberta-base")
# Run inference
sentences = [
'What are the top news stories on Sky News today?',
'def NewsTool:\n\t"""\n\tDescription:\n\tStay connected to global events with our up-to-date news around the world.\n\t"""',
'def RepoTool:\n\t"""\n\tDescription:\n\tDiscover GitHub projects tailored to your needs, explore their structures with insightful summaries, and get quick coding solutions with curated snippets. Elevate your coding journey with RepoTool, your go-to companion for GitHub project exploration and code mastery.\n\t"""',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Device Aware Information Retrieval
- Dataset:
dev
- Evaluated with
src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0574 |
cosine_accuracy@3 | 0.1588 |
cosine_accuracy@5 | 0.2771 |
cosine_accuracy@10 | 0.5484 |
cosine_precision@1 | 0.0574 |
cosine_precision@3 | 0.0529 |
cosine_precision@5 | 0.0554 |
cosine_precision@10 | 0.0548 |
cosine_recall@1 | 0.0574 |
cosine_recall@3 | 0.1588 |
cosine_recall@5 | 0.2771 |
cosine_recall@10 | 0.5484 |
cosine_ndcg@1 | 0.0574 |
cosine_ndcg@3 | 0.1156 |
cosine_ndcg@5 | 0.1636 |
cosine_ndcg@10 | 0.2502 |
cosine_mrr@10 | 0.162 |
cosine_map@100 | 0.1927 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 30,000 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 8 tokens
- mean: 25.83 tokens
- max: 121 tokens
- min: 22 tokens
- mean: 40.05 tokens
- max: 80 tokens
- min: 22 tokens
- mean: 37.91 tokens
- max: 80 tokens
- Samples:
sentence_0 sentence_1 sentence_2 Can you please convert this ABC notation, which represents musical notation, into both a MIDI file, which is a digital audio file format, and a PostScript file, which is a page description language file format used for printing?
def abc_to_audio:
"""
Description:
Converts ABC music notation to WAV, MIDI, and PostScript files.
"""def heygen:
"""
Description:
Meet HeyGen - The best AI video generation platform for your team.
"""I urgently require a detailed and extensive report that thoroughly analyzes every aspect of my website's SEO performance. Additionally, I need comprehensive suggestions and recommendations for enhancing its overall performance and making necessary improvements.
def seoanalysis:
"""
Description:
Use AI to analyze and improve the SEO of a website. Get advice on websites, keywords and competitors.
"""def WebRewind:
"""
Description:
Get the picture of a website at a specific date.
"""I am actively seeking to hire a highly skilled freelance engineer who specializes in civil engineering and possesses expertise in all aspects of the field, specifically for a construction project.
def TalentOrg:
"""
Description:
Find and hire freelance engineering talents from around the world.
"""def Agones:
"""
Description:
Agones provides soccer (football) results for matches played all over the world in the past 15 years.
""" - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | dev_cosine_ndcg@10 |
---|---|---|---|
-1 | -1 | - | 0.4447 |
0.0333 | 500 | 0.4387 | - |
0.0667 | 1000 | 0.4728 | - |
0.1 | 1500 | 0.6096 | - |
0.1333 | 2000 | 1.2803 | - |
0.1667 | 2500 | 1.3866 | - |
0.2 | 3000 | 1.3848 | 0.1957 |
0.2333 | 3500 | 1.3854 | - |
0.2667 | 4000 | 1.3864 | - |
0.3 | 4500 | 1.3859 | - |
0.3333 | 5000 | 1.3855 | - |
0.3667 | 5500 | 1.3856 | - |
0.4 | 6000 | 1.3863 | 0.1970 |
0.4333 | 6500 | 1.3852 | - |
0.4667 | 7000 | 1.3858 | - |
0.5 | 7500 | 1.3862 | - |
0.5333 | 8000 | 1.3856 | - |
0.5667 | 8500 | 1.3857 | - |
0.6 | 9000 | 1.3855 | 0.2291 |
0.6333 | 9500 | 1.3858 | - |
0.6667 | 10000 | 1.3856 | - |
0.7 | 10500 | 1.3859 | - |
0.7333 | 11000 | 1.386 | - |
0.7667 | 11500 | 1.386 | - |
0.8 | 12000 | 1.3868 | 0.2648 |
0.8333 | 12500 | 1.3858 | - |
0.8667 | 13000 | 1.3861 | - |
0.9 | 13500 | 1.3862 | - |
0.9333 | 14000 | 1.3857 | - |
0.9667 | 14500 | 1.3856 | - |
1.0 | 15000 | 1.3859 | 0.2502 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for LorMolf/mnrl-toole-overlap-roberta-base
Base model
FacebookAI/roberta-baseEvaluation results
- Cosine Accuracy@1 on devself-reported0.057
- Cosine Accuracy@3 on devself-reported0.159
- Cosine Accuracy@5 on devself-reported0.277
- Cosine Accuracy@10 on devself-reported0.548
- Cosine Precision@1 on devself-reported0.057
- Cosine Precision@3 on devself-reported0.053
- Cosine Precision@5 on devself-reported0.055
- Cosine Precision@10 on devself-reported0.055
- Cosine Recall@1 on devself-reported0.057
- Cosine Recall@3 on devself-reported0.159