SentenceTransformer based on FacebookAI/roberta-base
This is a sentence-transformers model finetuned from FacebookAI/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("LorMolf/mnrl-toolbench-roberta-base")
# Run inference
sentences = [
"I'm planning a family vacation and I need to find a child-friendly hotel with recreational activities for kids. Can you suggest some options in our destination city? Also, provide me with information about nearby attractions that would be suitable for children.",
'def webcams_travel_webcams_list_limit_limit_offset:\n\t"""\n\tDescription:\n\tThis is a modifier. Returns the list of webcams sliced by {limit}. The optional offset is given by {offset}. Required: {limit}. The maximum value for {limit} is 50. {offset} defaults to 0. If limit is not given, then a default of limit=10 is applied.\n\n\tArguments:\n\t---------\n\t- limit : NUMBER (required)\n\t Description: Maximum number of webcams in the result list.\n\t"""',
'def check_username_askfm:\n\t"""\n\tDescription:\n\tCheck username on Ask.fm\n\n\tArguments:\n\t---------\n\t- username : string (required)\n\t Default: username\n\t"""',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Device Aware Information Retrieval
- Dataset:
dev
- Evaluated with
src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.03 |
cosine_accuracy@3 | 0.15 |
cosine_accuracy@5 | 0.22 |
cosine_accuracy@10 | 0.41 |
cosine_precision@1 | 0.03 |
cosine_precision@3 | 0.0567 |
cosine_precision@5 | 0.05 |
cosine_precision@10 | 0.052 |
cosine_recall@1 | 0.0117 |
cosine_recall@3 | 0.06 |
cosine_recall@5 | 0.085 |
cosine_recall@10 | 0.171 |
cosine_ndcg@1 | 0.03 |
cosine_ndcg@3 | 0.0535 |
cosine_ndcg@5 | 0.0675 |
cosine_ndcg@10 | 0.1056 |
cosine_mrr@10 | 0.1191 |
cosine_map@100 | 0.1261 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 30,000 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 25 tokens
- mean: 58.56 tokens
- max: 110 tokens
- min: 26 tokens
- mean: 88.11 tokens
- max: 512 tokens
- min: 26 tokens
- mean: 98.59 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 sentence_2 My family and I are going on a road trip across Spain. We want to navigate using a map with Spanish labels. Can you provide us with a raster map tile of Spain with Spanish labels? Also, we need to find the correct address for a restaurant in Barcelona. The restaurant's address is Carrer de Mallorca 123, Barcelona.
def maptiles_getmaptilewithspanishlabels:
"""
Description:
Raster Map Tiles with Spanish Labels. Please see tutorial on how to use the Spanish world map.
Arguments:
---------
- z : NUMBER (required)
Description: zoom (from 0 up to zoom 19)
Default: 3
- x : NUMBER (required)
Description: X-number of tile (see documentation)
Default: 4
- y : NUMBER (required)
Description: Y-number of tile (see documentation)
Default: 2
"""def morning_star_stock_v2_get_short_interest:
"""
Description:
Mapped to Short Interest section in Quote tab
Arguments:
---------
- performanceId : STRING (required)
Description: Value of performanceId field from .../auto-complete or /get-summary or .../get-movers endpoints
Default: 0P0000OQN8
"""I want to explore the music of [artist]. Can you search for their tracks on Soundcloud and show me the search results? Also, find the album with the id '67890' on Deezer and provide its details. Additionally, give me the information about the song with the URL 'https://soundcloud.com/song/12345'.
def soundcloud__song_info:
"""
Description:
Get basic information of a song.
Arguments:
---------
- track_url : STRING (required)
Default: https://soundcloud.com/user-977421934/the-phoenix
"""def sms77io_get_webhooks:
"""
Description:
Retrieves all existing webhooks.
Arguments:
---------
- p : STRING (required)
Description: API key from Sms77.io.
"""I'm planning a road trip with my friends and we need to rent a van. Can you suggest some reliable car rental companies in the area? Additionally, provide us with a list of scenic routes and landmarks along the way.
def working_days__1_3_add_working_days:
"""
Description:
Add (or remove) any number of working days to a date.
Arguments:
---------
- country_code : STRING (required)
Description: The ISO country code (2 letters). See available countries & configurations
Default: US
- start_date : STRING (required)
Description: The start date (YYYY-MM-DD)
Default: 2013-12-31
- increment : NUMBER (required)
Description: The number of working days you want to add to your start date (positive or negative integer but not zero)
Default: 10
"""def coupons_all:
"""
Description:
get all coupons
Arguments:
---------
""" - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | dev_cosine_ndcg@10 |
---|---|---|---|
-1 | -1 | - | 0.1364 |
0.0333 | 500 | 0.5494 | - |
0.0667 | 1000 | 0.5672 | - |
0.1 | 1500 | 0.9232 | - |
0.1333 | 2000 | 1.3901 | - |
0.1667 | 2500 | 1.3868 | - |
0.2 | 3000 | 1.3869 | 0.1663 |
0.2333 | 3500 | 1.3866 | - |
0.2667 | 4000 | 1.3864 | - |
0.3 | 4500 | 1.3864 | - |
0.3333 | 5000 | 1.3865 | - |
0.3667 | 5500 | 1.3865 | - |
0.4 | 6000 | 1.3865 | 0.1316 |
0.4333 | 6500 | 1.3866 | - |
0.4667 | 7000 | 1.3865 | - |
0.5 | 7500 | 1.3863 | - |
0.5333 | 8000 | 1.3864 | - |
0.5667 | 8500 | 1.4115 | - |
0.6 | 9000 | 1.3871 | 0.1867 |
0.6333 | 9500 | 1.3864 | - |
0.6667 | 10000 | 1.3868 | - |
0.7 | 10500 | 1.3866 | - |
0.7333 | 11000 | 1.3863 | - |
0.7667 | 11500 | 1.3866 | - |
0.8 | 12000 | 1.3863 | 0.1902 |
0.8333 | 12500 | 1.3864 | - |
0.8667 | 13000 | 1.3864 | - |
0.9 | 13500 | 1.3864 | - |
0.9333 | 14000 | 1.3866 | - |
0.9667 | 14500 | 1.3864 | - |
1.0 | 15000 | 1.3864 | 0.1056 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for LorMolf/mnrl-toolbench-roberta-base
Base model
FacebookAI/roberta-baseEvaluation results
- Cosine Accuracy@1 on devself-reported0.030
- Cosine Accuracy@3 on devself-reported0.150
- Cosine Accuracy@5 on devself-reported0.220
- Cosine Accuracy@10 on devself-reported0.410
- Cosine Precision@1 on devself-reported0.030
- Cosine Precision@3 on devself-reported0.057
- Cosine Precision@5 on devself-reported0.050
- Cosine Precision@10 on devself-reported0.052
- Cosine Recall@1 on devself-reported0.012
- Cosine Recall@3 on devself-reported0.060