SentenceTransformer based on FacebookAI/roberta-base
This is a sentence-transformers model finetuned from FacebookAI/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LorMolf/mnrl-octopus-overlap-roberta-base")
# Run inference
sentences = [
"What's the proper way to set up a 'Coffee Break' event starting at 2023-09-05-15-00 and finishing at 2023-09-05-15-15?",
'def create_calendar_event(title, start_time, end_time):\n """\n Schedules a new event in the calendar.\n\n Parameters:\n - title (str): Event title.\n - start_time (str): Event start time as a string in ISO 8601 format "YYYY-MM-DD-HH-MM". For example, "2022-12-31-23-59" for 11:59 PM on December 31, 2022.\n - end_time (str): Event end time as a string in ISO 8601 format "YYYY-MM-DD-HH-MM". Must be after start_time. For example, "2023-01-01-00-00" for 12:00 AM on January 1, 2023.\n\n Returns:\n """',
'def send_email(recipient, title, content):\n """\n Sends an email to a specified recipient with a given title and content.\n\n Parameters:\n - recipient (str): The email address of the recipient.\n - title (str): The subject line of the email. This is a brief summary or title of the email\'s purpose or content.\n - content (str): The main body text of the email. It contains the primary message, information, or content that is intended to be communicated to the recipient.\n\n Returns:\n """',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Device Aware Information Retrieval
- Dataset:
dev
- Evaluated with
src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9231 |
cosine_accuracy@3 | 0.9744 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9231 |
cosine_precision@3 | 0.3248 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9231 |
cosine_recall@3 | 0.9744 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@1 | 0.9231 |
cosine_ndcg@3 | 0.9554 |
cosine_ndcg@5 | 0.9654 |
cosine_ndcg@10 | 0.9654 |
cosine_mrr@10 | 0.9538 |
cosine_map@100 | 0.9538 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 480 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 480 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 9 tokens
- mean: 22.01 tokens
- max: 44 tokens
- min: 73 tokens
- mean: 113.7 tokens
- max: 195 tokens
- min: 73 tokens
- mean: 114.92 tokens
- max: 195 tokens
- Samples:
sentence_0 sentence_1 sentence_2 How do I disable the Do Not Disturb feature on my device?
def enable_do_not_disturb(enabled):
"""
Toggles the Do Not Disturb mode on or off.
Parameters:
- enabled (bool): True to enable, False to disable Do Not Disturb mode.
Returns:
"""def make_phone_call(phone_number):
"""
Initiates a phone call to the given phone number. It can handle both international and domestic numbers.
Parameters:
- phone_number (str): phone number of the contact. The phone number should be provided in a standard format, preferably in E.164 format (e.g., +12345678900 for an international format).
Returns:
"""Please send a text to 'John Smith' saying 'Meeting is rescheduled to 3 PM, let everyone know.'
def send_text_message(contact_name, message):
"""
Sends a text message to the specified contact.
Parameters:
- contact_name (str): The name of the recipient contact.
- message (str): The content of the message to be sent. This is what the recipient will receive.
Returns:
"""def take_a_photo(camera):
"""
Captures a photo using the specified camera and resolution settings.
Parameters:
- camera (str): Specifies the camera to use. Can be 'front' or 'back'. The default is 'back'.
Returns:
- str: The string contains the file path of the captured photo if successful, or an error message if not. Example: '/storage/emulated/0/Pictures/MyApp/IMG_20240310_123456.jpg'
"""Could you create a contact for my boss, Mr. David Anderson? His contact number is +12347654321.
def create_contact(name, phone_number):
"""
Creates a new contact entry in the device's address book.
Parameters:
- name (str): Full name of the contact. This should include first and last name.
- phone_number (str): phone number of the contact. The phone number should be provided in a standard format, preferably in E.164 format (e.g., +12345678900 for an international format).
Returns:
"""def play_video_on_nest_hub(video_service, video_name):
"""
Streams video on a Google Nest Hub device from a specified service.
Parameters:
- video_service (str): Video streaming service name.
- video_name (str): Video playlist name to play.
Returns:
""" - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | dev_cosine_ndcg@10 |
---|---|---|
-1 | -1 | 0.3941 |
0.2 | 48 | 0.8413 |
0.4 | 96 | 0.9286 |
0.6 | 144 | 0.9554 |
0.8 | 192 | 0.9654 |
1.0 | 240 | 0.9654 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for LorMolf/mnrl-octopus-overlap-roberta-base
Base model
FacebookAI/roberta-baseEvaluation results
- Cosine Accuracy@1 on devself-reported0.923
- Cosine Accuracy@3 on devself-reported0.974
- Cosine Accuracy@5 on devself-reported1.000
- Cosine Accuracy@10 on devself-reported1.000
- Cosine Precision@1 on devself-reported0.923
- Cosine Precision@3 on devself-reported0.325
- Cosine Precision@5 on devself-reported0.200
- Cosine Precision@10 on devself-reported0.100
- Cosine Recall@1 on devself-reported0.923
- Cosine Recall@3 on devself-reported0.974