SentenceTransformer based on FacebookAI/roberta-base

This is a sentence-transformers model finetuned from FacebookAI/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: FacebookAI/roberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("LorMolf/mnrl-octopus-overlap-roberta-base")
# Run inference
sentences = [
    "What's the proper way to set up a 'Coffee Break' event starting at 2023-09-05-15-00 and finishing at 2023-09-05-15-15?",
    'def create_calendar_event(title, start_time, end_time):\n    """\n    Schedules a new event in the calendar.\n\n    Parameters:\n    - title (str): Event title.\n    - start_time (str): Event start time as a string in ISO 8601 format "YYYY-MM-DD-HH-MM". For example, "2022-12-31-23-59" for 11:59 PM on December 31, 2022.\n    - end_time (str): Event end time as a string in ISO 8601 format "YYYY-MM-DD-HH-MM". Must be after start_time. For example, "2023-01-01-00-00" for 12:00 AM on January 1, 2023.\n\n    Returns:\n    """',
    'def send_email(recipient, title, content):\n    """\n    Sends an email to a specified recipient with a given title and content.\n\n    Parameters:\n    - recipient (str): The email address of the recipient.\n    - title (str): The subject line of the email. This is a brief summary or title of the email\'s purpose or content.\n    - content (str): The main body text of the email. It contains the primary message, information, or content that is intended to be communicated to the recipient.\n\n    Returns:\n    """',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Device Aware Information Retrieval

  • Dataset: dev
  • Evaluated with src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator
Metric Value
cosine_accuracy@1 0.9231
cosine_accuracy@3 0.9744
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.9231
cosine_precision@3 0.3248
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9231
cosine_recall@3 0.9744
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@1 0.9231
cosine_ndcg@3 0.9554
cosine_ndcg@5 0.9654
cosine_ndcg@10 0.9654
cosine_mrr@10 0.9538
cosine_map@100 0.9538

Training Details

Training Dataset

Unnamed Dataset

  • Size: 480 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 480 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 9 tokens
    • mean: 22.01 tokens
    • max: 44 tokens
    • min: 73 tokens
    • mean: 113.7 tokens
    • max: 195 tokens
    • min: 73 tokens
    • mean: 114.92 tokens
    • max: 195 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    How do I disable the Do Not Disturb feature on my device? def enable_do_not_disturb(enabled):
    """
    Toggles the Do Not Disturb mode on or off.

    Parameters:
    - enabled (bool): True to enable, False to disable Do Not Disturb mode.

    Returns:
    """
    def make_phone_call(phone_number):
    """
    Initiates a phone call to the given phone number. It can handle both international and domestic numbers.

    Parameters:
    - phone_number (str): phone number of the contact. The phone number should be provided in a standard format, preferably in E.164 format (e.g., +12345678900 for an international format).

    Returns:
    """
    Please send a text to 'John Smith' saying 'Meeting is rescheduled to 3 PM, let everyone know.' def send_text_message(contact_name, message):
    """
    Sends a text message to the specified contact.

    Parameters:
    - contact_name (str): The name of the recipient contact.
    - message (str): The content of the message to be sent. This is what the recipient will receive.

    Returns:
    """
    def take_a_photo(camera):
    """
    Captures a photo using the specified camera and resolution settings.

    Parameters:
    - camera (str): Specifies the camera to use. Can be 'front' or 'back'. The default is 'back'.

    Returns:
    - str: The string contains the file path of the captured photo if successful, or an error message if not. Example: '/storage/emulated/0/Pictures/MyApp/IMG_20240310_123456.jpg'
    """
    Could you create a contact for my boss, Mr. David Anderson? His contact number is +12347654321. def create_contact(name, phone_number):
    """
    Creates a new contact entry in the device's address book.

    Parameters:
    - name (str): Full name of the contact. This should include first and last name.
    - phone_number (str): phone number of the contact. The phone number should be provided in a standard format, preferably in E.164 format (e.g., +12345678900 for an international format).

    Returns:
    """
    def play_video_on_nest_hub(video_service, video_name):
    """
    Streams video on a Google Nest Hub device from a specified service.

    Parameters:
    - video_service (str): Video streaming service name.
    - video_name (str): Video playlist name to play.

    Returns:
    """
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • num_train_epochs: 1
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 2
  • per_device_eval_batch_size: 2
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step dev_cosine_ndcg@10
-1 -1 0.3941
0.2 48 0.8413
0.4 96 0.9286
0.6 144 0.9554
0.8 192 0.9654
1.0 240 0.9654

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.0.2
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for LorMolf/mnrl-octopus-overlap-roberta-base

Finetuned
(1567)
this model

Evaluation results