SentenceTransformer based on FacebookAI/roberta-base
This is a sentence-transformers model finetuned from FacebookAI/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LorMolf/mnrl-bfcl-roberta-base")
# Run inference
sentences = [
"In a texas holdem game, Who won in the poker game with players Alex, Sam, Robert and Steve given the cards Alex':['A of spades', 'K of spades'], 'Sam': ['2 of diamonds', '3 of clubs'], 'Robert': ['Q of hearts', '10 of hearts'], 'Steve': ['4 of spades', '5 of spades']?",
'def poker_game_winner:\n\t"""\n\tDescription:\n\t\n\tIdentify the winner in a poker game based on the cards.\n\t\n\tArguments:\n\t---------\n\t- players : array = None (required) Names of the players in a list.\n\t- cards : dict = None (required) An object containing the player name as key and the cards as values in a list.\n\t- type : string = None (optional) Type of poker game. Defaults to \'Texas Holdem\'\n\t\n\t\n\t"""',
'def geocode_address:\n\t"""\n\tDescription:\n\t\n\tTransforms a description of a location (like a pair of coordinates, an address, or a name of a place) to a location on the Earth\'s surface.\n\t\n\tArguments:\n\t---------\n\t- address : string = None (required) The address that needs to be geocoded.\n\t- locale : string = None (optional) Preferred locale for the returned address information. (Optional) Default: None\n\t\n\t\n\t"""',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Device Aware Information Retrieval
- Dataset:
dev
- Evaluated with
src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0038 |
cosine_accuracy@3 | 0.0095 |
cosine_accuracy@5 | 0.0095 |
cosine_accuracy@10 | 0.0189 |
cosine_precision@1 | 0.0038 |
cosine_precision@3 | 0.0032 |
cosine_precision@5 | 0.0019 |
cosine_precision@10 | 0.0019 |
cosine_recall@1 | 0.0038 |
cosine_recall@3 | 0.0095 |
cosine_recall@5 | 0.0095 |
cosine_recall@10 | 0.0189 |
cosine_ndcg@1 | 0.0038 |
cosine_ndcg@3 | 0.0069 |
cosine_ndcg@5 | 0.0069 |
cosine_ndcg@10 | 0.01 |
cosine_mrr@10 | 0.0074 |
cosine_map@100 | 0.0121 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,780 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 5 tokens
- mean: 46.51 tokens
- max: 366 tokens
- min: 62 tokens
- mean: 130.97 tokens
- max: 512 tokens
- min: 61 tokens
- mean: 119.6 tokens
- max: 428 tokens
- Samples:
sentence_0 sentence_1 sentence_2 I want to find 5 restaurants nearby my location, Manhattan, offering Thai food and a vegan menu.
def find_instrument:
"""
Description:
Search for a musical instrument within specified budget and of specific type.
Arguments:
---------
- budget : float = None (required) Your budget for the instrument.
- type : string = None (required) Type of the instrument
- make : string = None (optional) Maker of the instrument, Optional parameter. Default is 'all'
"""def sports_ranking.get_team_position:
"""
Description:
Retrieve a team's position and stats in the basketball league for a given season.
Arguments:
---------
- team : string = None (required) The name of the team.
- season : string = None (required) The season for which data should be fetched.
- detailed : boolean = False (optional) Flag to retrieve detailed stats or just the position.
"""Find the most followed person on twitter who tweets about psychology related to behaviour and group dynamics.
def social_media_analytics.most_followed:
"""
Description:
Find the most followed Twitter user related to certain topics.
Arguments:
---------
- topic : string = None (required) The main topic of interest.
- sub_topics : array = None (optional) Sub-topics related to main topic, Optional. Default is an empty list.
- region : string = None (optional) Region of interest for twitter search, Optional. Default is 'global'.
"""def library.search_books:
"""
Description:
Search for a book in a given library with optional parameters
Arguments:
---------
- location : string = None (required) Name or city of library
- genre : string = None (required) Genre of the book
- title : string = None (optional) Title of the book. Default ''
"""What is the evolutionary history of pandas?
def calculate_biodiversity_index:
"""
Description:
Calculate the biodiversity index of a specific environment or biome using species richness and species evenness.
Arguments:
---------
- species_richness : integer = None (required) The number of different species in a specific environment.
- species_evenness : integer = None (required) The relative abundance of the different species in an environment.
- region : string = Desert (optional) The specific environment or biome to be measured.
"""def sports_ranking:
"""
Description:
Fetch the ranking of a specific sports team in a specific league
Arguments:
---------
- team : string = None (required) The name of the team.
- league : string = None (required) The name of the league.
- season : integer = None (optional) Optional parameter to specify the season, default is the current season, 2024
""" - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | dev_cosine_ndcg@10 |
---|---|---|---|
-1 | -1 | - | 0.1710 |
0.2 | 378 | - | 0.0064 |
0.2646 | 500 | 0.9661 | - |
0.4 | 756 | - | 0.0106 |
0.5291 | 1000 | 1.3862 | - |
0.6 | 1134 | - | 0.0125 |
0.7937 | 1500 | 1.3863 | - |
0.8 | 1512 | - | 0.0106 |
1.0 | 1890 | - | 0.0100 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for LorMolf/mnrl-bfcl-roberta-base
Base model
FacebookAI/roberta-baseEvaluation results
- Cosine Accuracy@1 on devself-reported0.004
- Cosine Accuracy@3 on devself-reported0.009
- Cosine Accuracy@5 on devself-reported0.009
- Cosine Accuracy@10 on devself-reported0.019
- Cosine Precision@1 on devself-reported0.004
- Cosine Precision@3 on devself-reported0.003
- Cosine Precision@5 on devself-reported0.002
- Cosine Precision@10 on devself-reported0.002
- Cosine Recall@1 on devself-reported0.004
- Cosine Recall@3 on devself-reported0.009