tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/linalg
/tests
/test_regression.py
""" Test functions for linalg module | |
""" | |
from __future__ import division, absolute_import, print_function | |
from numpy.testing import * | |
import numpy as np | |
from numpy import linalg, arange, float64, array, dot, transpose | |
rlevel = 1 | |
class TestRegression(TestCase): | |
def test_eig_build(self, level = rlevel): | |
"""Ticket #652""" | |
rva = array([1.03221168e+02 +0.j, | |
-1.91843603e+01 +0.j, | |
-6.04004526e-01+15.84422474j, | |
-6.04004526e-01-15.84422474j, | |
-1.13692929e+01 +0.j, | |
-6.57612485e-01+10.41755503j, | |
-6.57612485e-01-10.41755503j, | |
1.82126812e+01 +0.j, | |
1.06011014e+01 +0.j, | |
7.80732773e+00 +0.j, | |
-7.65390898e-01 +0.j, | |
1.51971555e-15 +0.j, | |
-1.51308713e-15 +0.j]) | |
a = arange(13*13, dtype = float64) | |
a.shape = (13, 13) | |
a = a%17 | |
va, ve = linalg.eig(a) | |
va.sort() | |
rva.sort() | |
assert_array_almost_equal(va, rva) | |
def test_eigh_build(self, level = rlevel): | |
"""Ticket 662.""" | |
rvals = [68.60568999, 89.57756725, 106.67185574] | |
cov = array([[ 77.70273908, 3.51489954, 15.64602427], | |
[3.51489954, 88.97013878, -1.07431931], | |
[15.64602427, -1.07431931, 98.18223512]]) | |
vals, vecs = linalg.eigh(cov) | |
assert_array_almost_equal(vals, rvals) | |
def test_svd_build(self, level = rlevel): | |
"""Ticket 627.""" | |
a = array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) | |
m, n = a.shape | |
u, s, vh = linalg.svd(a) | |
b = dot(transpose(u[:, n:]), a) | |
assert_array_almost_equal(b, np.zeros((2, 2))) | |
def test_norm_vector_badarg(self): | |
"""Regression for #786: Froebenius norm for vectors raises | |
TypeError.""" | |
self.assertRaises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro') | |
def test_lapack_endian(self): | |
# For bug #1482 | |
a = array([[5.7998084, -2.1825367 ], | |
[-2.1825367, 9.85910595]], dtype='>f8') | |
b = array(a, dtype='<f8') | |
ap = linalg.cholesky(a) | |
bp = linalg.cholesky(b) | |
assert_array_equal(ap, bp) | |
def test_large_svd_32bit(self): | |
# See gh-4442, 64bit would require very large/slow matrices. | |
x = np.eye(1000, 66) | |
np.linalg.svd(x) | |
def test_svd_no_uv(self): | |
# gh-4733 | |
for shape in (3, 4), (4, 4), (4, 3): | |
for t in float, complex: | |
a = np.ones(shape, dtype=t) | |
w = linalg.svd(a, compute_uv=False) | |
c = np.count_nonzero(np.absolute(w) > 0.5) | |
assert_equal(c, 1) | |
assert_equal(np.linalg.matrix_rank(a), 1) | |
assert_array_less(1, np.linalg.norm(a, ord=2)) | |
if __name__ == '__main__': | |
run_module_suite() | |