File size: 2,913 Bytes
c011401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
""" Test functions for linalg module
"""
from __future__ import division, absolute_import, print_function


from numpy.testing import *
import numpy as np
from numpy import linalg, arange, float64, array, dot, transpose

rlevel = 1

class TestRegression(TestCase):
    def test_eig_build(self, level = rlevel):
        """Ticket #652"""
        rva = array([1.03221168e+02 +0.j,
               -1.91843603e+01 +0.j,
               -6.04004526e-01+15.84422474j,
               -6.04004526e-01-15.84422474j,
               -1.13692929e+01 +0.j,
               -6.57612485e-01+10.41755503j,
               -6.57612485e-01-10.41755503j,
               1.82126812e+01 +0.j,
               1.06011014e+01 +0.j,
               7.80732773e+00 +0.j,
               -7.65390898e-01 +0.j,
               1.51971555e-15 +0.j,
               -1.51308713e-15 +0.j])
        a = arange(13*13, dtype = float64)
        a.shape = (13, 13)
        a = a%17
        va, ve = linalg.eig(a)
        va.sort()
        rva.sort()
        assert_array_almost_equal(va, rva)

    def test_eigh_build(self, level = rlevel):
        """Ticket 662."""
        rvals = [68.60568999, 89.57756725, 106.67185574]

        cov = array([[ 77.70273908,   3.51489954,  15.64602427],
                     [3.51489954,  88.97013878,  -1.07431931],
                     [15.64602427,  -1.07431931,  98.18223512]])

        vals, vecs = linalg.eigh(cov)
        assert_array_almost_equal(vals, rvals)

    def test_svd_build(self, level = rlevel):
        """Ticket 627."""
        a = array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]])
        m, n = a.shape
        u, s, vh = linalg.svd(a)

        b = dot(transpose(u[:, n:]), a)

        assert_array_almost_equal(b, np.zeros((2, 2)))

    def test_norm_vector_badarg(self):
        """Regression for #786: Froebenius norm for vectors raises
        TypeError."""
        self.assertRaises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')

    def test_lapack_endian(self):
        # For bug #1482
        a = array([[5.7998084,  -2.1825367 ],
                   [-2.1825367,   9.85910595]], dtype='>f8')
        b = array(a, dtype='<f8')

        ap = linalg.cholesky(a)
        bp = linalg.cholesky(b)
        assert_array_equal(ap, bp)

    def test_large_svd_32bit(self):
        # See gh-4442, 64bit would require very large/slow matrices.
        x = np.eye(1000, 66)
        np.linalg.svd(x)

    def test_svd_no_uv(self):
        # gh-4733
        for shape in (3, 4), (4, 4), (4, 3):
            for t in float, complex:
                a = np.ones(shape, dtype=t)
                w = linalg.svd(a, compute_uv=False)
                c = np.count_nonzero(np.absolute(w) > 0.5)
                assert_equal(c, 1)
                assert_equal(np.linalg.matrix_rank(a), 1)
                assert_array_less(1, np.linalg.norm(a, ord=2))


if __name__ == '__main__':
    run_module_suite()