tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/linalg
/lapack_lite
/dlamch.c
/* If config.h is available, we only need dlamc3 */ | |
doublereal dlamch_(char *cmach) | |
{ | |
/* -- LAPACK auxiliary routine (version 3.0) -- | |
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | |
Courant Institute, Argonne National Lab, and Rice University | |
October 31, 1992 | |
Purpose | |
======= | |
DLAMCH determines double precision machine parameters. | |
Arguments | |
========= | |
CMACH (input) CHARACTER*1 | |
Specifies the value to be returned by DLAMCH: | |
= 'E' or 'e', DLAMCH := eps | |
= 'S' or 's , DLAMCH := sfmin | |
= 'B' or 'b', DLAMCH := base | |
= 'P' or 'p', DLAMCH := eps*base | |
= 'N' or 'n', DLAMCH := t | |
= 'R' or 'r', DLAMCH := rnd | |
= 'M' or 'm', DLAMCH := emin | |
= 'U' or 'u', DLAMCH := rmin | |
= 'L' or 'l', DLAMCH := emax | |
= 'O' or 'o', DLAMCH := rmax | |
where | |
eps = relative machine precision | |
sfmin = safe minimum, such that 1/sfmin does not overflow | |
base = base of the machine | |
prec = eps*base | |
t = number of (base) digits in the mantissa | |
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise | |
emin = minimum exponent before (gradual) underflow | |
rmin = underflow threshold - base**(emin-1) | |
emax = largest exponent before overflow | |
rmax = overflow threshold - (base**emax)*(1-eps) | |
===================================================================== | |
*/ | |
/* >>Start of File<< | |
Initialized data */ | |
static logical first = TRUE_; | |
/* System generated locals */ | |
integer i__1; | |
doublereal ret_val; | |
/* Builtin functions */ | |
double pow_di(doublereal *, integer *); | |
/* Local variables */ | |
static doublereal base; | |
static integer beta; | |
static doublereal emin, prec, emax; | |
static integer imin, imax; | |
static logical lrnd; | |
static doublereal rmin, rmax, t, rmach; | |
extern logical lsame_(char *, char *); | |
static doublereal small, sfmin; | |
extern /* Subroutine */ int dlamc2_(integer *, integer *, logical *, | |
doublereal *, integer *, doublereal *, integer *, doublereal *); | |
static integer it; | |
static doublereal rnd, eps; | |
if (first) { | |
first = FALSE_; | |
dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax); | |
base = (doublereal) beta; | |
t = (doublereal) it; | |
if (lrnd) { | |
rnd = 1.; | |
i__1 = 1 - it; | |
eps = pow_di(&base, &i__1) / 2; | |
} else { | |
rnd = 0.; | |
i__1 = 1 - it; | |
eps = pow_di(&base, &i__1); | |
} | |
prec = eps * base; | |
emin = (doublereal) imin; | |
emax = (doublereal) imax; | |
sfmin = rmin; | |
small = 1. / rmax; | |
if (small >= sfmin) { | |
/* Use SMALL plus a bit, to avoid the possibility of rou | |
nding | |
causing overflow when computing 1/sfmin. */ | |
sfmin = small * (eps + 1.); | |
} | |
} | |
if (lsame_(cmach, "E")) { | |
rmach = eps; | |
} else if (lsame_(cmach, "S")) { | |
rmach = sfmin; | |
} else if (lsame_(cmach, "B")) { | |
rmach = base; | |
} else if (lsame_(cmach, "P")) { | |
rmach = prec; | |
} else if (lsame_(cmach, "N")) { | |
rmach = t; | |
} else if (lsame_(cmach, "R")) { | |
rmach = rnd; | |
} else if (lsame_(cmach, "M")) { | |
rmach = emin; | |
} else if (lsame_(cmach, "U")) { | |
rmach = rmin; | |
} else if (lsame_(cmach, "L")) { | |
rmach = emax; | |
} else if (lsame_(cmach, "O")) { | |
rmach = rmax; | |
} | |
ret_val = rmach; | |
return ret_val; | |
/* End of DLAMCH */ | |
} /* dlamch_ */ | |
/* Subroutine */ int dlamc1_(integer *beta, integer *t, logical *rnd, logical | |
*ieee1) | |
{ | |
/* -- LAPACK auxiliary routine (version 3.0) -- | |
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | |
Courant Institute, Argonne National Lab, and Rice University | |
October 31, 1992 | |
Purpose | |
======= | |
DLAMC1 determines the machine parameters given by BETA, T, RND, and | |
IEEE1. | |
Arguments | |
========= | |
BETA (output) INTEGER | |
The base of the machine. | |
T (output) INTEGER | |
The number of ( BETA ) digits in the mantissa. | |
RND (output) LOGICAL | |
Specifies whether proper rounding ( RND = .TRUE. ) or | |
chopping ( RND = .FALSE. ) occurs in addition. This may not | |
be a reliable guide to the way in which the machine performs | |
its arithmetic. | |
IEEE1 (output) LOGICAL | |
Specifies whether rounding appears to be done in the IEEE | |
'round to nearest' style. | |
Further Details | |
=============== | |
The routine is based on the routine ENVRON by Malcolm and | |
incorporates suggestions by Gentleman and Marovich. See | |
Malcolm M. A. (1972) Algorithms to reveal properties of | |
floating-point arithmetic. Comms. of the ACM, 15, 949-951. | |
Gentleman W. M. and Marovich S. B. (1974) More on algorithms | |
that reveal properties of floating point arithmetic units. | |
Comms. of the ACM, 17, 276-277. | |
===================================================================== | |
*/ | |
/* Initialized data */ | |
static logical first = TRUE_; | |
/* System generated locals */ | |
doublereal d__1, d__2; | |
/* Local variables */ | |
static logical lrnd; | |
static doublereal a, b, c, f; | |
static integer lbeta; | |
static doublereal savec; | |
extern doublereal dlamc3_(doublereal *, doublereal *); | |
static logical lieee1; | |
static doublereal t1, t2; | |
static integer lt; | |
static doublereal one, qtr; | |
if (first) { | |
first = FALSE_; | |
one = 1.; | |
/* LBETA, LIEEE1, LT and LRND are the local values of BE | |
TA, | |
IEEE1, T and RND. | |
Throughout this routine we use the function DLAMC3 to ens | |
ure | |
that relevant values are stored and not held in registers, | |
or | |
are not affected by optimizers. | |
Compute a = 2.0**m with the smallest positive integer m s | |
uch | |
that | |
fl( a + 1.0 ) = a. */ | |
a = 1.; | |
c = 1.; | |
/* + WHILE( C.EQ.ONE )LOOP */ | |
L10: | |
if (c == one) { | |
a *= 2; | |
c = dlamc3_(&a, &one); | |
d__1 = -a; | |
c = dlamc3_(&c, &d__1); | |
goto L10; | |
} | |
/* + END WHILE | |
Now compute b = 2.0**m with the smallest positive integer | |
m | |
such that | |
fl( a + b ) .gt. a. */ | |
b = 1.; | |
c = dlamc3_(&a, &b); | |
/* + WHILE( C.EQ.A )LOOP */ | |
L20: | |
if (c == a) { | |
b *= 2; | |
c = dlamc3_(&a, &b); | |
goto L20; | |
} | |
/* + END WHILE | |
Now compute the base. a and c are neighbouring floating po | |
int | |
numbers in the interval ( beta**t, beta**( t + 1 ) ) and | |
so | |
their difference is beta. Adding 0.25 to c is to ensure that | |
it | |
is truncated to beta and not ( beta - 1 ). */ | |
qtr = one / 4; | |
savec = c; | |
d__1 = -a; | |
c = dlamc3_(&c, &d__1); | |
lbeta = (integer) (c + qtr); | |
/* Now determine whether rounding or chopping occurs, by addin | |
g a | |
bit less than beta/2 and a bit more than beta/2 to | |
a. */ | |
b = (doublereal) lbeta; | |
d__1 = b / 2; | |
d__2 = -b / 100; | |
f = dlamc3_(&d__1, &d__2); | |
c = dlamc3_(&f, &a); | |
if (c == a) { | |
lrnd = TRUE_; | |
} else { | |
lrnd = FALSE_; | |
} | |
d__1 = b / 2; | |
d__2 = b / 100; | |
f = dlamc3_(&d__1, &d__2); | |
c = dlamc3_(&f, &a); | |
if (lrnd && c == a) { | |
lrnd = FALSE_; | |
} | |
/* Try and decide whether rounding is done in the IEEE 'round | |
to | |
nearest' style. B/2 is half a unit in the last place of the | |
two | |
numbers A and SAVEC. Furthermore, A is even, i.e. has last | |
bit | |
zero, and SAVEC is odd. Thus adding B/2 to A should not cha | |
nge | |
A, but adding B/2 to SAVEC should change SAVEC. */ | |
d__1 = b / 2; | |
t1 = dlamc3_(&d__1, &a); | |
d__1 = b / 2; | |
t2 = dlamc3_(&d__1, &savec); | |
lieee1 = t1 == a && t2 > savec && lrnd; | |
/* Now find the mantissa, t. It should be the integer part | |
of | |
log to the base beta of a, however it is safer to determine | |
t | |
by powering. So we find t as the smallest positive integer | |
for | |
which | |
fl( beta**t + 1.0 ) = 1.0. */ | |
lt = 0; | |
a = 1.; | |
c = 1.; | |
/* + WHILE( C.EQ.ONE )LOOP */ | |
L30: | |
if (c == one) { | |
++lt; | |
a *= lbeta; | |
c = dlamc3_(&a, &one); | |
d__1 = -a; | |
c = dlamc3_(&c, &d__1); | |
goto L30; | |
} | |
/* + END WHILE */ | |
} | |
*beta = lbeta; | |
*t = lt; | |
*rnd = lrnd; | |
*ieee1 = lieee1; | |
return 0; | |
/* End of DLAMC1 */ | |
} /* dlamc1_ */ | |
/* Subroutine */ int dlamc2_(integer *beta, integer *t, logical *rnd, | |
doublereal *eps, integer *emin, doublereal *rmin, integer *emax, | |
doublereal *rmax) | |
{ | |
/* -- LAPACK auxiliary routine (version 3.0) -- | |
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | |
Courant Institute, Argonne National Lab, and Rice University | |
October 31, 1992 | |
Purpose | |
======= | |
DLAMC2 determines the machine parameters specified in its argument | |
list. | |
Arguments | |
========= | |
BETA (output) INTEGER | |
The base of the machine. | |
T (output) INTEGER | |
The number of ( BETA ) digits in the mantissa. | |
RND (output) LOGICAL | |
Specifies whether proper rounding ( RND = .TRUE. ) or | |
chopping ( RND = .FALSE. ) occurs in addition. This may not | |
be a reliable guide to the way in which the machine performs | |
its arithmetic. | |
EPS (output) DOUBLE PRECISION | |
The smallest positive number such that | |
fl( 1.0 - EPS ) .LT. 1.0, | |
where fl denotes the computed value. | |
EMIN (output) INTEGER | |
The minimum exponent before (gradual) underflow occurs. | |
RMIN (output) DOUBLE PRECISION | |
The smallest normalized number for the machine, given by | |
BASE**( EMIN - 1 ), where BASE is the floating point value | |
of BETA. | |
EMAX (output) INTEGER | |
The maximum exponent before overflow occurs. | |
RMAX (output) DOUBLE PRECISION | |
The largest positive number for the machine, given by | |
BASE**EMAX * ( 1 - EPS ), where BASE is the floating point | |
value of BETA. | |
Further Details | |
=============== | |
The computation of EPS is based on a routine PARANOIA by | |
W. Kahan of the University of California at Berkeley. | |
===================================================================== | |
*/ | |
/* Initialized data */ | |
static logical first = TRUE_; | |
static logical iwarn = FALSE_; | |
/* System generated locals */ | |
integer i__1; | |
doublereal d__1, d__2, d__3, d__4, d__5; | |
/* Builtin functions */ | |
double pow_di(doublereal *, integer *); | |
/* Local variables */ | |
static logical ieee; | |
static doublereal half; | |
static logical lrnd; | |
static doublereal leps, zero, a, b, c; | |
static integer i, lbeta; | |
static doublereal rbase; | |
static integer lemin, lemax, gnmin; | |
static doublereal small; | |
static integer gpmin; | |
static doublereal third, lrmin, lrmax, sixth; | |
extern /* Subroutine */ int dlamc1_(integer *, integer *, logical *, | |
logical *); | |
extern doublereal dlamc3_(doublereal *, doublereal *); | |
static logical lieee1; | |
extern /* Subroutine */ int dlamc4_(integer *, doublereal *, integer *), | |
dlamc5_(integer *, integer *, integer *, logical *, integer *, | |
doublereal *); | |
static integer lt, ngnmin, ngpmin; | |
static doublereal one, two; | |
if (first) { | |
first = FALSE_; | |
zero = 0.; | |
one = 1.; | |
two = 2.; | |
/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values | |
of | |
BETA, T, RND, EPS, EMIN and RMIN. | |
Throughout this routine we use the function DLAMC3 to ens | |
ure | |
that relevant values are stored and not held in registers, | |
or | |
are not affected by optimizers. | |
DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1. | |
*/ | |
dlamc1_(&lbeta, <, &lrnd, &lieee1); | |
/* Start to find EPS. */ | |
b = (doublereal) lbeta; | |
i__1 = -lt; | |
a = pow_di(&b, &i__1); | |
leps = a; | |
/* Try some tricks to see whether or not this is the correct E | |
PS. */ | |
b = two / 3; | |
half = one / 2; | |
d__1 = -half; | |
sixth = dlamc3_(&b, &d__1); | |
third = dlamc3_(&sixth, &sixth); | |
d__1 = -half; | |
b = dlamc3_(&third, &d__1); | |
b = dlamc3_(&b, &sixth); | |
b = abs(b); | |
if (b < leps) { | |
b = leps; | |
} | |
leps = 1.; | |
/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */ | |
L10: | |
if (leps > b && b > zero) { | |
leps = b; | |
d__1 = half * leps; | |
/* Computing 5th power */ | |
d__3 = two, d__4 = d__3, d__3 *= d__3; | |
/* Computing 2nd power */ | |
d__5 = leps; | |
d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5); | |
c = dlamc3_(&d__1, &d__2); | |
d__1 = -c; | |
c = dlamc3_(&half, &d__1); | |
b = dlamc3_(&half, &c); | |
d__1 = -b; | |
c = dlamc3_(&half, &d__1); | |
b = dlamc3_(&half, &c); | |
goto L10; | |
} | |
/* + END WHILE */ | |
if (a < leps) { | |
leps = a; | |
} | |
/* Computation of EPS complete. | |
Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3 | |
)). | |
Keep dividing A by BETA until (gradual) underflow occurs. T | |
his | |
is detected when we cannot recover the previous A. */ | |
rbase = one / lbeta; | |
small = one; | |
for (i = 1; i <= 3; ++i) { | |
d__1 = small * rbase; | |
small = dlamc3_(&d__1, &zero); | |
/* L20: */ | |
} | |
a = dlamc3_(&one, &small); | |
dlamc4_(&ngpmin, &one, &lbeta); | |
d__1 = -one; | |
dlamc4_(&ngnmin, &d__1, &lbeta); | |
dlamc4_(&gpmin, &a, &lbeta); | |
d__1 = -a; | |
dlamc4_(&gnmin, &d__1, &lbeta); | |
ieee = FALSE_; | |
if (ngpmin == ngnmin && gpmin == gnmin) { | |
if (ngpmin == gpmin) { | |
lemin = ngpmin; | |
/* ( Non twos-complement machines, no gradual under | |
flow; | |
e.g., VAX ) */ | |
} else if (gpmin - ngpmin == 3) { | |
lemin = ngpmin - 1 + lt; | |
ieee = TRUE_; | |
/* ( Non twos-complement machines, with gradual und | |
erflow; | |
e.g., IEEE standard followers ) */ | |
} else { | |
lemin = min(ngpmin,gpmin); | |
/* ( A guess; no known machine ) */ | |
iwarn = TRUE_; | |
} | |
} else if (ngpmin == gpmin && ngnmin == gnmin) { | |
if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) { | |
lemin = max(ngpmin,ngnmin); | |
/* ( Twos-complement machines, no gradual underflow | |
; | |
e.g., CYBER 205 ) */ | |
} else { | |
lemin = min(ngpmin,ngnmin); | |
/* ( A guess; no known machine ) */ | |
iwarn = TRUE_; | |
} | |
} else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin) | |
{ | |
if (gpmin - min(ngpmin,ngnmin) == 3) { | |
lemin = max(ngpmin,ngnmin) - 1 + lt; | |
/* ( Twos-complement machines with gradual underflo | |
w; | |
no known machine ) */ | |
} else { | |
lemin = min(ngpmin,ngnmin); | |
/* ( A guess; no known machine ) */ | |
iwarn = TRUE_; | |
} | |
} else { | |
/* Computing MIN */ | |
i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin); | |
lemin = min(i__1,gnmin); | |
/* ( A guess; no known machine ) */ | |
iwarn = TRUE_; | |
} | |
/* ** | |
Comment out this if block if EMIN is ok */ | |
if (iwarn) { | |
first = TRUE_; | |
printf("\n\n WARNING. The value EMIN may be incorrect:- "); | |
printf("EMIN = %8i\n",lemin); | |
printf("If, after inspection, the value EMIN looks acceptable"); | |
printf("please comment out \n the IF block as marked within the"); | |
printf("code of routine DLAMC2, \n otherwise supply EMIN"); | |
printf("explicitly.\n"); | |
} | |
/* ** | |
Assume IEEE arithmetic if we found denormalised numbers abo | |
ve, | |
or if arithmetic seems to round in the IEEE style, determi | |
ned | |
in routine DLAMC1. A true IEEE machine should have both thi | |
ngs | |
true; however, faulty machines may have one or the other. */ | |
ieee = ieee || lieee1; | |
/* Compute RMIN by successive division by BETA. We could comp | |
ute | |
RMIN as BASE**( EMIN - 1 ), but some machines underflow dur | |
ing | |
this computation. */ | |
lrmin = 1.; | |
i__1 = 1 - lemin; | |
for (i = 1; i <= 1-lemin; ++i) { | |
d__1 = lrmin * rbase; | |
lrmin = dlamc3_(&d__1, &zero); | |
/* L30: */ | |
} | |
/* Finally, call DLAMC5 to compute EMAX and RMAX. */ | |
dlamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax); | |
} | |
*beta = lbeta; | |
*t = lt; | |
*rnd = lrnd; | |
*eps = leps; | |
*emin = lemin; | |
*rmin = lrmin; | |
*emax = lemax; | |
*rmax = lrmax; | |
return 0; | |
/* End of DLAMC2 */ | |
} /* dlamc2_ */ | |
doublereal dlamc3_(doublereal *a, doublereal *b) | |
{ | |
/* -- LAPACK auxiliary routine (version 3.0) -- | |
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | |
Courant Institute, Argonne National Lab, and Rice University | |
October 31, 1992 | |
Purpose | |
======= | |
DLAMC3 is intended to force A and B to be stored prior to doing | |
the addition of A and B , for use in situations where optimizers | |
might hold one of these in a register. | |
Arguments | |
========= | |
A, B (input) DOUBLE PRECISION | |
The values A and B. | |
===================================================================== | |
*/ | |
/* >>Start of File<< | |
System generated locals */ | |
volatile doublereal ret_val; | |
ret_val = *a + *b; | |
return ret_val; | |
/* End of DLAMC3 */ | |
} /* dlamc3_ */ | |
/* Subroutine */ int dlamc4_(integer *emin, doublereal *start, integer *base) | |
{ | |
/* -- LAPACK auxiliary routine (version 2.0) -- | |
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | |
Courant Institute, Argonne National Lab, and Rice University | |
October 31, 1992 | |
Purpose | |
======= | |
DLAMC4 is a service routine for DLAMC2. | |
Arguments | |
========= | |
EMIN (output) EMIN | |
The minimum exponent before (gradual) underflow, computed by | |
setting A = START and dividing by BASE until the previous A | |
can not be recovered. | |
START (input) DOUBLE PRECISION | |
The starting point for determining EMIN. | |
BASE (input) INTEGER | |
The base of the machine. | |
===================================================================== | |
*/ | |
/* System generated locals */ | |
integer i__1; | |
doublereal d__1; | |
/* Local variables */ | |
static doublereal zero, a; | |
static integer i; | |
static doublereal rbase, b1, b2, c1, c2, d1, d2; | |
extern doublereal dlamc3_(doublereal *, doublereal *); | |
static doublereal one; | |
a = *start; | |
one = 1.; | |
rbase = one / *base; | |
zero = 0.; | |
*emin = 1; | |
d__1 = a * rbase; | |
b1 = dlamc3_(&d__1, &zero); | |
c1 = a; | |
c2 = a; | |
d1 = a; | |
d2 = a; | |
/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND. | |
$ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */ | |
L10: | |
if (c1 == a && c2 == a && d1 == a && d2 == a) { | |
--(*emin); | |
a = b1; | |
d__1 = a / *base; | |
b1 = dlamc3_(&d__1, &zero); | |
d__1 = b1 * *base; | |
c1 = dlamc3_(&d__1, &zero); | |
d1 = zero; | |
i__1 = *base; | |
for (i = 1; i <= *base; ++i) { | |
d1 += b1; | |
/* L20: */ | |
} | |
d__1 = a * rbase; | |
b2 = dlamc3_(&d__1, &zero); | |
d__1 = b2 / rbase; | |
c2 = dlamc3_(&d__1, &zero); | |
d2 = zero; | |
i__1 = *base; | |
for (i = 1; i <= *base; ++i) { | |
d2 += b2; | |
/* L30: */ | |
} | |
goto L10; | |
} | |
/* + END WHILE */ | |
return 0; | |
/* End of DLAMC4 */ | |
} /* dlamc4_ */ | |
/* Subroutine */ int dlamc5_(integer *beta, integer *p, integer *emin, | |
logical *ieee, integer *emax, doublereal *rmax) | |
{ | |
/* -- LAPACK auxiliary routine (version 3.0) -- | |
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., | |
Courant Institute, Argonne National Lab, and Rice University | |
October 31, 1992 | |
Purpose | |
======= | |
DLAMC5 attempts to compute RMAX, the largest machine floating-point | |
number, without overflow. It assumes that EMAX + abs(EMIN) sum | |
approximately to a power of 2. It will fail on machines where this | |
assumption does not hold, for example, the Cyber 205 (EMIN = -28625, | |
EMAX = 28718). It will also fail if the value supplied for EMIN is | |
too large (i.e. too close to zero), probably with overflow. | |
Arguments | |
========= | |
BETA (input) INTEGER | |
The base of floating-point arithmetic. | |
P (input) INTEGER | |
The number of base BETA digits in the mantissa of a | |
floating-point value. | |
EMIN (input) INTEGER | |
The minimum exponent before (gradual) underflow. | |
IEEE (input) LOGICAL | |
A logical flag specifying whether or not the arithmetic | |
system is thought to comply with the IEEE standard. | |
EMAX (output) INTEGER | |
The largest exponent before overflow | |
RMAX (output) DOUBLE PRECISION | |
The largest machine floating-point number. | |
===================================================================== | |
First compute LEXP and UEXP, two powers of 2 that bound | |
abs(EMIN). We then assume that EMAX + abs(EMIN) will sum | |
approximately to the bound that is closest to abs(EMIN). | |
(EMAX is the exponent of the required number RMAX). */ | |
/* Table of constant values */ | |
static doublereal c_b5 = 0.; | |
/* System generated locals */ | |
integer i__1; | |
doublereal d__1; | |
/* Local variables */ | |
static integer lexp; | |
static doublereal oldy; | |
static integer uexp, i; | |
static doublereal y, z; | |
static integer nbits; | |
extern doublereal dlamc3_(doublereal *, doublereal *); | |
static doublereal recbas; | |
static integer exbits, expsum, try__; | |
lexp = 1; | |
exbits = 1; | |
L10: | |
try__ = lexp << 1; | |
if (try__ <= -(*emin)) { | |
lexp = try__; | |
++exbits; | |
goto L10; | |
} | |
if (lexp == -(*emin)) { | |
uexp = lexp; | |
} else { | |
uexp = try__; | |
++exbits; | |
} | |
/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater | |
than or equal to EMIN. EXBITS is the number of bits needed to | |
store the exponent. */ | |
if (uexp + *emin > -lexp - *emin) { | |
expsum = lexp << 1; | |
} else { | |
expsum = uexp << 1; | |
} | |
/* EXPSUM is the exponent range, approximately equal to | |
EMAX - EMIN + 1 . */ | |
*emax = expsum + *emin - 1; | |
nbits = exbits + 1 + *p; | |
/* NBITS is the total number of bits needed to store a | |
floating-point number. */ | |
if (nbits % 2 == 1 && *beta == 2) { | |
/* Either there are an odd number of bits used to store a | |
floating-point number, which is unlikely, or some bits are | |
not used in the representation of numbers, which is possible | |
, | |
(e.g. Cray machines) or the mantissa has an implicit bit, | |
(e.g. IEEE machines, Dec Vax machines), which is perhaps the | |
most likely. We have to assume the last alternative. | |
If this is true, then we need to reduce EMAX by one because | |
there must be some way of representing zero in an implicit-b | |
it | |
system. On machines like Cray, we are reducing EMAX by one | |
unnecessarily. */ | |
--(*emax); | |
} | |
if (*ieee) { | |
/* Assume we are on an IEEE machine which reserves one exponent | |
for infinity and NaN. */ | |
--(*emax); | |
} | |
/* Now create RMAX, the largest machine number, which should | |
be equal to (1.0 - BETA**(-P)) * BETA**EMAX . | |
First compute 1.0 - BETA**(-P), being careful that the | |
result is less than 1.0 . */ | |
recbas = 1. / *beta; | |
z = *beta - 1.; | |
y = 0.; | |
i__1 = *p; | |
for (i = 1; i <= *p; ++i) { | |
z *= recbas; | |
if (y < 1.) { | |
oldy = y; | |
} | |
y = dlamc3_(&y, &z); | |
/* L20: */ | |
} | |
if (y >= 1.) { | |
y = oldy; | |
} | |
/* Now multiply by BETA**EMAX to get RMAX. */ | |
i__1 = *emax; | |
for (i = 1; i <= *emax; ++i) { | |
d__1 = y * *beta; | |
y = dlamc3_(&d__1, &c_b5); | |
/* L30: */ | |
} | |
*rmax = y; | |
return 0; | |
/* End of DLAMC5 */ | |
} /* dlamc5_ */ | |