File size: 23,743 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 |
#include <stdio.h>
#include "f2c.h"
/* If config.h is available, we only need dlamc3 */
#ifndef HAVE_CONFIG
doublereal dlamch_(char *cmach)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMCH determines double precision machine parameters.
Arguments
=========
CMACH (input) CHARACTER*1
Specifies the value to be returned by DLAMCH:
= 'E' or 'e', DLAMCH := eps
= 'S' or 's , DLAMCH := sfmin
= 'B' or 'b', DLAMCH := base
= 'P' or 'p', DLAMCH := eps*base
= 'N' or 'n', DLAMCH := t
= 'R' or 'r', DLAMCH := rnd
= 'M' or 'm', DLAMCH := emin
= 'U' or 'u', DLAMCH := rmin
= 'L' or 'l', DLAMCH := emax
= 'O' or 'o', DLAMCH := rmax
where
eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base**(emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base**emax)*(1-eps)
=====================================================================
*/
/* >>Start of File<<
Initialized data */
static logical first = TRUE_;
/* System generated locals */
integer i__1;
doublereal ret_val;
/* Builtin functions */
double pow_di(doublereal *, integer *);
/* Local variables */
static doublereal base;
static integer beta;
static doublereal emin, prec, emax;
static integer imin, imax;
static logical lrnd;
static doublereal rmin, rmax, t, rmach;
extern logical lsame_(char *, char *);
static doublereal small, sfmin;
extern /* Subroutine */ int dlamc2_(integer *, integer *, logical *,
doublereal *, integer *, doublereal *, integer *, doublereal *);
static integer it;
static doublereal rnd, eps;
if (first) {
first = FALSE_;
dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
base = (doublereal) beta;
t = (doublereal) it;
if (lrnd) {
rnd = 1.;
i__1 = 1 - it;
eps = pow_di(&base, &i__1) / 2;
} else {
rnd = 0.;
i__1 = 1 - it;
eps = pow_di(&base, &i__1);
}
prec = eps * base;
emin = (doublereal) imin;
emax = (doublereal) imax;
sfmin = rmin;
small = 1. / rmax;
if (small >= sfmin) {
/* Use SMALL plus a bit, to avoid the possibility of rou
nding
causing overflow when computing 1/sfmin. */
sfmin = small * (eps + 1.);
}
}
if (lsame_(cmach, "E")) {
rmach = eps;
} else if (lsame_(cmach, "S")) {
rmach = sfmin;
} else if (lsame_(cmach, "B")) {
rmach = base;
} else if (lsame_(cmach, "P")) {
rmach = prec;
} else if (lsame_(cmach, "N")) {
rmach = t;
} else if (lsame_(cmach, "R")) {
rmach = rnd;
} else if (lsame_(cmach, "M")) {
rmach = emin;
} else if (lsame_(cmach, "U")) {
rmach = rmin;
} else if (lsame_(cmach, "L")) {
rmach = emax;
} else if (lsame_(cmach, "O")) {
rmach = rmax;
}
ret_val = rmach;
return ret_val;
/* End of DLAMCH */
} /* dlamch_ */
/* Subroutine */ int dlamc1_(integer *beta, integer *t, logical *rnd, logical
*ieee1)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMC1 determines the machine parameters given by BETA, T, RND, and
IEEE1.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
IEEE1 (output) LOGICAL
Specifies whether rounding appears to be done in the IEEE
'round to nearest' style.
Further Details
===============
The routine is based on the routine ENVRON by Malcolm and
incorporates suggestions by Gentleman and Marovich. See
Malcolm M. A. (1972) Algorithms to reveal properties of
floating-point arithmetic. Comms. of the ACM, 15, 949-951.
Gentleman W. M. and Marovich S. B. (1974) More on algorithms
that reveal properties of floating point arithmetic units.
Comms. of the ACM, 17, 276-277.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
doublereal d__1, d__2;
/* Local variables */
static logical lrnd;
static doublereal a, b, c, f;
static integer lbeta;
static doublereal savec;
extern doublereal dlamc3_(doublereal *, doublereal *);
static logical lieee1;
static doublereal t1, t2;
static integer lt;
static doublereal one, qtr;
if (first) {
first = FALSE_;
one = 1.;
/* LBETA, LIEEE1, LT and LRND are the local values of BE
TA,
IEEE1, T and RND.
Throughout this routine we use the function DLAMC3 to ens
ure
that relevant values are stored and not held in registers,
or
are not affected by optimizers.
Compute a = 2.0**m with the smallest positive integer m s
uch
that
fl( a + 1.0 ) = a. */
a = 1.;
c = 1.;
/* + WHILE( C.EQ.ONE )LOOP */
L10:
if (c == one) {
a *= 2;
c = dlamc3_(&a, &one);
d__1 = -a;
c = dlamc3_(&c, &d__1);
goto L10;
}
/* + END WHILE
Now compute b = 2.0**m with the smallest positive integer
m
such that
fl( a + b ) .gt. a. */
b = 1.;
c = dlamc3_(&a, &b);
/* + WHILE( C.EQ.A )LOOP */
L20:
if (c == a) {
b *= 2;
c = dlamc3_(&a, &b);
goto L20;
}
/* + END WHILE
Now compute the base. a and c are neighbouring floating po
int
numbers in the interval ( beta**t, beta**( t + 1 ) ) and
so
their difference is beta. Adding 0.25 to c is to ensure that
it
is truncated to beta and not ( beta - 1 ). */
qtr = one / 4;
savec = c;
d__1 = -a;
c = dlamc3_(&c, &d__1);
lbeta = (integer) (c + qtr);
/* Now determine whether rounding or chopping occurs, by addin
g a
bit less than beta/2 and a bit more than beta/2 to
a. */
b = (doublereal) lbeta;
d__1 = b / 2;
d__2 = -b / 100;
f = dlamc3_(&d__1, &d__2);
c = dlamc3_(&f, &a);
if (c == a) {
lrnd = TRUE_;
} else {
lrnd = FALSE_;
}
d__1 = b / 2;
d__2 = b / 100;
f = dlamc3_(&d__1, &d__2);
c = dlamc3_(&f, &a);
if (lrnd && c == a) {
lrnd = FALSE_;
}
/* Try and decide whether rounding is done in the IEEE 'round
to
nearest' style. B/2 is half a unit in the last place of the
two
numbers A and SAVEC. Furthermore, A is even, i.e. has last
bit
zero, and SAVEC is odd. Thus adding B/2 to A should not cha
nge
A, but adding B/2 to SAVEC should change SAVEC. */
d__1 = b / 2;
t1 = dlamc3_(&d__1, &a);
d__1 = b / 2;
t2 = dlamc3_(&d__1, &savec);
lieee1 = t1 == a && t2 > savec && lrnd;
/* Now find the mantissa, t. It should be the integer part
of
log to the base beta of a, however it is safer to determine
t
by powering. So we find t as the smallest positive integer
for
which
fl( beta**t + 1.0 ) = 1.0. */
lt = 0;
a = 1.;
c = 1.;
/* + WHILE( C.EQ.ONE )LOOP */
L30:
if (c == one) {
++lt;
a *= lbeta;
c = dlamc3_(&a, &one);
d__1 = -a;
c = dlamc3_(&c, &d__1);
goto L30;
}
/* + END WHILE */
}
*beta = lbeta;
*t = lt;
*rnd = lrnd;
*ieee1 = lieee1;
return 0;
/* End of DLAMC1 */
} /* dlamc1_ */
/* Subroutine */ int dlamc2_(integer *beta, integer *t, logical *rnd,
doublereal *eps, integer *emin, doublereal *rmin, integer *emax,
doublereal *rmax)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMC2 determines the machine parameters specified in its argument
list.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
EPS (output) DOUBLE PRECISION
The smallest positive number such that
fl( 1.0 - EPS ) .LT. 1.0,
where fl denotes the computed value.
EMIN (output) INTEGER
The minimum exponent before (gradual) underflow occurs.
RMIN (output) DOUBLE PRECISION
The smallest normalized number for the machine, given by
BASE**( EMIN - 1 ), where BASE is the floating point value
of BETA.
EMAX (output) INTEGER
The maximum exponent before overflow occurs.
RMAX (output) DOUBLE PRECISION
The largest positive number for the machine, given by
BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
value of BETA.
Further Details
===============
The computation of EPS is based on a routine PARANOIA by
W. Kahan of the University of California at Berkeley.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
static logical iwarn = FALSE_;
/* System generated locals */
integer i__1;
doublereal d__1, d__2, d__3, d__4, d__5;
/* Builtin functions */
double pow_di(doublereal *, integer *);
/* Local variables */
static logical ieee;
static doublereal half;
static logical lrnd;
static doublereal leps, zero, a, b, c;
static integer i, lbeta;
static doublereal rbase;
static integer lemin, lemax, gnmin;
static doublereal small;
static integer gpmin;
static doublereal third, lrmin, lrmax, sixth;
extern /* Subroutine */ int dlamc1_(integer *, integer *, logical *,
logical *);
extern doublereal dlamc3_(doublereal *, doublereal *);
static logical lieee1;
extern /* Subroutine */ int dlamc4_(integer *, doublereal *, integer *),
dlamc5_(integer *, integer *, integer *, logical *, integer *,
doublereal *);
static integer lt, ngnmin, ngpmin;
static doublereal one, two;
if (first) {
first = FALSE_;
zero = 0.;
one = 1.;
two = 2.;
/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values
of
BETA, T, RND, EPS, EMIN and RMIN.
Throughout this routine we use the function DLAMC3 to ens
ure
that relevant values are stored and not held in registers,
or
are not affected by optimizers.
DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
*/
dlamc1_(&lbeta, <, &lrnd, &lieee1);
/* Start to find EPS. */
b = (doublereal) lbeta;
i__1 = -lt;
a = pow_di(&b, &i__1);
leps = a;
/* Try some tricks to see whether or not this is the correct E
PS. */
b = two / 3;
half = one / 2;
d__1 = -half;
sixth = dlamc3_(&b, &d__1);
third = dlamc3_(&sixth, &sixth);
d__1 = -half;
b = dlamc3_(&third, &d__1);
b = dlamc3_(&b, &sixth);
b = abs(b);
if (b < leps) {
b = leps;
}
leps = 1.;
/* + WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
L10:
if (leps > b && b > zero) {
leps = b;
d__1 = half * leps;
/* Computing 5th power */
d__3 = two, d__4 = d__3, d__3 *= d__3;
/* Computing 2nd power */
d__5 = leps;
d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5);
c = dlamc3_(&d__1, &d__2);
d__1 = -c;
c = dlamc3_(&half, &d__1);
b = dlamc3_(&half, &c);
d__1 = -b;
c = dlamc3_(&half, &d__1);
b = dlamc3_(&half, &c);
goto L10;
}
/* + END WHILE */
if (a < leps) {
leps = a;
}
/* Computation of EPS complete.
Now find EMIN. Let A = + or - 1, and + or - (1 + BASE**(-3
)).
Keep dividing A by BETA until (gradual) underflow occurs. T
his
is detected when we cannot recover the previous A. */
rbase = one / lbeta;
small = one;
for (i = 1; i <= 3; ++i) {
d__1 = small * rbase;
small = dlamc3_(&d__1, &zero);
/* L20: */
}
a = dlamc3_(&one, &small);
dlamc4_(&ngpmin, &one, &lbeta);
d__1 = -one;
dlamc4_(&ngnmin, &d__1, &lbeta);
dlamc4_(&gpmin, &a, &lbeta);
d__1 = -a;
dlamc4_(&gnmin, &d__1, &lbeta);
ieee = FALSE_;
if (ngpmin == ngnmin && gpmin == gnmin) {
if (ngpmin == gpmin) {
lemin = ngpmin;
/* ( Non twos-complement machines, no gradual under
flow;
e.g., VAX ) */
} else if (gpmin - ngpmin == 3) {
lemin = ngpmin - 1 + lt;
ieee = TRUE_;
/* ( Non twos-complement machines, with gradual und
erflow;
e.g., IEEE standard followers ) */
} else {
lemin = min(ngpmin,gpmin);
/* ( A guess; no known machine ) */
iwarn = TRUE_;
}
} else if (ngpmin == gpmin && ngnmin == gnmin) {
if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
lemin = max(ngpmin,ngnmin);
/* ( Twos-complement machines, no gradual underflow
;
e.g., CYBER 205 ) */
} else {
lemin = min(ngpmin,ngnmin);
/* ( A guess; no known machine ) */
iwarn = TRUE_;
}
} else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
{
if (gpmin - min(ngpmin,ngnmin) == 3) {
lemin = max(ngpmin,ngnmin) - 1 + lt;
/* ( Twos-complement machines with gradual underflo
w;
no known machine ) */
} else {
lemin = min(ngpmin,ngnmin);
/* ( A guess; no known machine ) */
iwarn = TRUE_;
}
} else {
/* Computing MIN */
i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin);
lemin = min(i__1,gnmin);
/* ( A guess; no known machine ) */
iwarn = TRUE_;
}
/* **
Comment out this if block if EMIN is ok */
if (iwarn) {
first = TRUE_;
printf("\n\n WARNING. The value EMIN may be incorrect:- ");
printf("EMIN = %8i\n",lemin);
printf("If, after inspection, the value EMIN looks acceptable");
printf("please comment out \n the IF block as marked within the");
printf("code of routine DLAMC2, \n otherwise supply EMIN");
printf("explicitly.\n");
}
/* **
Assume IEEE arithmetic if we found denormalised numbers abo
ve,
or if arithmetic seems to round in the IEEE style, determi
ned
in routine DLAMC1. A true IEEE machine should have both thi
ngs
true; however, faulty machines may have one or the other. */
ieee = ieee || lieee1;
/* Compute RMIN by successive division by BETA. We could comp
ute
RMIN as BASE**( EMIN - 1 ), but some machines underflow dur
ing
this computation. */
lrmin = 1.;
i__1 = 1 - lemin;
for (i = 1; i <= 1-lemin; ++i) {
d__1 = lrmin * rbase;
lrmin = dlamc3_(&d__1, &zero);
/* L30: */
}
/* Finally, call DLAMC5 to compute EMAX and RMAX. */
dlamc5_(&lbeta, <, &lemin, &ieee, &lemax, &lrmax);
}
*beta = lbeta;
*t = lt;
*rnd = lrnd;
*eps = leps;
*emin = lemin;
*rmin = lrmin;
*emax = lemax;
*rmax = lrmax;
return 0;
/* End of DLAMC2 */
} /* dlamc2_ */
#endif
doublereal dlamc3_(doublereal *a, doublereal *b)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMC3 is intended to force A and B to be stored prior to doing
the addition of A and B , for use in situations where optimizers
might hold one of these in a register.
Arguments
=========
A, B (input) DOUBLE PRECISION
The values A and B.
=====================================================================
*/
/* >>Start of File<<
System generated locals */
volatile doublereal ret_val;
ret_val = *a + *b;
return ret_val;
/* End of DLAMC3 */
} /* dlamc3_ */
#ifndef HAVE_CONFIG
/* Subroutine */ int dlamc4_(integer *emin, doublereal *start, integer *base)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMC4 is a service routine for DLAMC2.
Arguments
=========
EMIN (output) EMIN
The minimum exponent before (gradual) underflow, computed by
setting A = START and dividing by BASE until the previous A
can not be recovered.
START (input) DOUBLE PRECISION
The starting point for determining EMIN.
BASE (input) INTEGER
The base of the machine.
=====================================================================
*/
/* System generated locals */
integer i__1;
doublereal d__1;
/* Local variables */
static doublereal zero, a;
static integer i;
static doublereal rbase, b1, b2, c1, c2, d1, d2;
extern doublereal dlamc3_(doublereal *, doublereal *);
static doublereal one;
a = *start;
one = 1.;
rbase = one / *base;
zero = 0.;
*emin = 1;
d__1 = a * rbase;
b1 = dlamc3_(&d__1, &zero);
c1 = a;
c2 = a;
d1 = a;
d2 = a;
/* + WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
$ ( D1.EQ.A ).AND.( D2.EQ.A ) )LOOP */
L10:
if (c1 == a && c2 == a && d1 == a && d2 == a) {
--(*emin);
a = b1;
d__1 = a / *base;
b1 = dlamc3_(&d__1, &zero);
d__1 = b1 * *base;
c1 = dlamc3_(&d__1, &zero);
d1 = zero;
i__1 = *base;
for (i = 1; i <= *base; ++i) {
d1 += b1;
/* L20: */
}
d__1 = a * rbase;
b2 = dlamc3_(&d__1, &zero);
d__1 = b2 / rbase;
c2 = dlamc3_(&d__1, &zero);
d2 = zero;
i__1 = *base;
for (i = 1; i <= *base; ++i) {
d2 += b2;
/* L30: */
}
goto L10;
}
/* + END WHILE */
return 0;
/* End of DLAMC4 */
} /* dlamc4_ */
/* Subroutine */ int dlamc5_(integer *beta, integer *p, integer *emin,
logical *ieee, integer *emax, doublereal *rmax)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMC5 attempts to compute RMAX, the largest machine floating-point
number, without overflow. It assumes that EMAX + abs(EMIN) sum
approximately to a power of 2. It will fail on machines where this
assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
EMAX = 28718). It will also fail if the value supplied for EMIN is
too large (i.e. too close to zero), probably with overflow.
Arguments
=========
BETA (input) INTEGER
The base of floating-point arithmetic.
P (input) INTEGER
The number of base BETA digits in the mantissa of a
floating-point value.
EMIN (input) INTEGER
The minimum exponent before (gradual) underflow.
IEEE (input) LOGICAL
A logical flag specifying whether or not the arithmetic
system is thought to comply with the IEEE standard.
EMAX (output) INTEGER
The largest exponent before overflow
RMAX (output) DOUBLE PRECISION
The largest machine floating-point number.
=====================================================================
First compute LEXP and UEXP, two powers of 2 that bound
abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
approximately to the bound that is closest to abs(EMIN).
(EMAX is the exponent of the required number RMAX). */
/* Table of constant values */
static doublereal c_b5 = 0.;
/* System generated locals */
integer i__1;
doublereal d__1;
/* Local variables */
static integer lexp;
static doublereal oldy;
static integer uexp, i;
static doublereal y, z;
static integer nbits;
extern doublereal dlamc3_(doublereal *, doublereal *);
static doublereal recbas;
static integer exbits, expsum, try__;
lexp = 1;
exbits = 1;
L10:
try__ = lexp << 1;
if (try__ <= -(*emin)) {
lexp = try__;
++exbits;
goto L10;
}
if (lexp == -(*emin)) {
uexp = lexp;
} else {
uexp = try__;
++exbits;
}
/* Now -LEXP is less than or equal to EMIN, and -UEXP is greater
than or equal to EMIN. EXBITS is the number of bits needed to
store the exponent. */
if (uexp + *emin > -lexp - *emin) {
expsum = lexp << 1;
} else {
expsum = uexp << 1;
}
/* EXPSUM is the exponent range, approximately equal to
EMAX - EMIN + 1 . */
*emax = expsum + *emin - 1;
nbits = exbits + 1 + *p;
/* NBITS is the total number of bits needed to store a
floating-point number. */
if (nbits % 2 == 1 && *beta == 2) {
/* Either there are an odd number of bits used to store a
floating-point number, which is unlikely, or some bits are
not used in the representation of numbers, which is possible
,
(e.g. Cray machines) or the mantissa has an implicit bit,
(e.g. IEEE machines, Dec Vax machines), which is perhaps the
most likely. We have to assume the last alternative.
If this is true, then we need to reduce EMAX by one because
there must be some way of representing zero in an implicit-b
it
system. On machines like Cray, we are reducing EMAX by one
unnecessarily. */
--(*emax);
}
if (*ieee) {
/* Assume we are on an IEEE machine which reserves one exponent
for infinity and NaN. */
--(*emax);
}
/* Now create RMAX, the largest machine number, which should
be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
First compute 1.0 - BETA**(-P), being careful that the
result is less than 1.0 . */
recbas = 1. / *beta;
z = *beta - 1.;
y = 0.;
i__1 = *p;
for (i = 1; i <= *p; ++i) {
z *= recbas;
if (y < 1.) {
oldy = y;
}
y = dlamc3_(&y, &z);
/* L20: */
}
if (y >= 1.) {
y = oldy;
}
/* Now multiply by BETA**EMAX to get RMAX. */
i__1 = *emax;
for (i = 1; i <= *emax; ++i) {
d__1 = y * *beta;
y = dlamc3_(&d__1, &c_b5);
/* L30: */
}
*rmax = y;
return 0;
/* End of DLAMC5 */
} /* dlamc5_ */
#endif
|