File size: 23,743 Bytes
c011401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
#include <stdio.h>
#include "f2c.h"

/* If config.h is available, we only need dlamc3 */
#ifndef HAVE_CONFIG
doublereal dlamch_(char *cmach)
{
/*  -- LAPACK auxiliary routine (version 3.0) --
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
       Courant Institute, Argonne National Lab, and Rice University
       October 31, 1992


    Purpose
    =======

    DLAMCH determines double precision machine parameters.

    Arguments
    =========

    CMACH   (input) CHARACTER*1
            Specifies the value to be returned by DLAMCH:
            = 'E' or 'e',   DLAMCH := eps
            = 'S' or 's ,   DLAMCH := sfmin
            = 'B' or 'b',   DLAMCH := base
            = 'P' or 'p',   DLAMCH := eps*base
            = 'N' or 'n',   DLAMCH := t
            = 'R' or 'r',   DLAMCH := rnd
            = 'M' or 'm',   DLAMCH := emin
            = 'U' or 'u',   DLAMCH := rmin
            = 'L' or 'l',   DLAMCH := emax
            = 'O' or 'o',   DLAMCH := rmax

            where

            eps   = relative machine precision
            sfmin = safe minimum, such that 1/sfmin does not overflow
            base  = base of the machine
            prec  = eps*base
            t     = number of (base) digits in the mantissa
            rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise
            emin  = minimum exponent before (gradual) underflow
            rmin  = underflow threshold - base**(emin-1)
            emax  = largest exponent before overflow
            rmax  = overflow threshold  - (base**emax)*(1-eps)

   =====================================================================
*/
/* >>Start of File<<
       Initialized data */
    static logical first = TRUE_;
    /* System generated locals */
    integer i__1;
    doublereal ret_val;
    /* Builtin functions */
    double pow_di(doublereal *, integer *);
    /* Local variables */
    static doublereal base;
    static integer beta;
    static doublereal emin, prec, emax;
    static integer imin, imax;
    static logical lrnd;
    static doublereal rmin, rmax, t, rmach;
    extern logical lsame_(char *, char *);
    static doublereal small, sfmin;
    extern /* Subroutine */ int dlamc2_(integer *, integer *, logical *,
	    doublereal *, integer *, doublereal *, integer *, doublereal *);
    static integer it;
    static doublereal rnd, eps;



    if (first) {
	first = FALSE_;
	dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
	base = (doublereal) beta;
	t = (doublereal) it;
	if (lrnd) {
	    rnd = 1.;
	    i__1 = 1 - it;
	    eps = pow_di(&base, &i__1) / 2;
	} else {
	    rnd = 0.;
	    i__1 = 1 - it;
	    eps = pow_di(&base, &i__1);
	}
	prec = eps * base;
	emin = (doublereal) imin;
	emax = (doublereal) imax;
	sfmin = rmin;
	small = 1. / rmax;
	if (small >= sfmin) {

/*           Use SMALL plus a bit, to avoid the possibility of rou
nding
             causing overflow when computing  1/sfmin. */

	    sfmin = small * (eps + 1.);
	}
    }

    if (lsame_(cmach, "E")) {
	rmach = eps;
    } else if (lsame_(cmach, "S")) {
	rmach = sfmin;
    } else if (lsame_(cmach, "B")) {
	rmach = base;
    } else if (lsame_(cmach, "P")) {
	rmach = prec;
    } else if (lsame_(cmach, "N")) {
	rmach = t;
    } else if (lsame_(cmach, "R")) {
	rmach = rnd;
    } else if (lsame_(cmach, "M")) {
	rmach = emin;
    } else if (lsame_(cmach, "U")) {
	rmach = rmin;
    } else if (lsame_(cmach, "L")) {
	rmach = emax;
    } else if (lsame_(cmach, "O")) {
	rmach = rmax;
    }

    ret_val = rmach;
    return ret_val;

/*     End of DLAMCH */

} /* dlamch_ */


/* Subroutine */ int dlamc1_(integer *beta, integer *t, logical *rnd, logical
	*ieee1)
{
/*  -- LAPACK auxiliary routine (version 3.0) --
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
       Courant Institute, Argonne National Lab, and Rice University
       October 31, 1992


    Purpose
    =======

    DLAMC1 determines the machine parameters given by BETA, T, RND, and
    IEEE1.

    Arguments
    =========

    BETA    (output) INTEGER
            The base of the machine.

    T       (output) INTEGER
            The number of ( BETA ) digits in the mantissa.

    RND     (output) LOGICAL
            Specifies whether proper rounding  ( RND = .TRUE. )  or
            chopping  ( RND = .FALSE. )  occurs in addition. This may not

            be a reliable guide to the way in which the machine performs

            its arithmetic.

    IEEE1   (output) LOGICAL
            Specifies whether rounding appears to be done in the IEEE
            'round to nearest' style.

    Further Details
    ===============

    The routine is based on the routine  ENVRON  by Malcolm and
    incorporates suggestions by Gentleman and Marovich. See

       Malcolm M. A. (1972) Algorithms to reveal properties of
          floating-point arithmetic. Comms. of the ACM, 15, 949-951.

       Gentleman W. M. and Marovich S. B. (1974) More on algorithms
          that reveal properties of floating point arithmetic units.
          Comms. of the ACM, 17, 276-277.

   =====================================================================
*/
    /* Initialized data */
    static logical first = TRUE_;
    /* System generated locals */
    doublereal d__1, d__2;
    /* Local variables */
    static logical lrnd;
    static doublereal a, b, c, f;
    static integer lbeta;
    static doublereal savec;
    extern doublereal dlamc3_(doublereal *, doublereal *);
    static logical lieee1;
    static doublereal t1, t2;
    static integer lt;
    static doublereal one, qtr;



    if (first) {
	first = FALSE_;
	one = 1.;

/*        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BE
TA,
          IEEE1, T and RND.

          Throughout this routine  we use the function  DLAMC3  to ens
ure
          that relevant values are  stored and not held in registers,
 or
          are not affected by optimizers.

          Compute  a = 2.0**m  with the  smallest positive integer m s
uch
          that

             fl( a + 1.0 ) = a. */

	a = 1.;
	c = 1.;

/* +       WHILE( C.EQ.ONE )LOOP */
L10:
	if (c == one) {
	    a *= 2;
	    c = dlamc3_(&a, &one);
	    d__1 = -a;
	    c = dlamc3_(&c, &d__1);
	    goto L10;
	}
/* +       END WHILE

          Now compute  b = 2.0**m  with the smallest positive integer
m
          such that

             fl( a + b ) .gt. a. */

	b = 1.;
	c = dlamc3_(&a, &b);

/* +       WHILE( C.EQ.A )LOOP */
L20:
	if (c == a) {
	    b *= 2;
	    c = dlamc3_(&a, &b);
	    goto L20;
	}
/* +       END WHILE

          Now compute the base.  a and c  are neighbouring floating po
int
          numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and
 so
          their difference is beta. Adding 0.25 to c is to ensure that
 it
          is truncated to beta and not ( beta - 1 ). */

	qtr = one / 4;
	savec = c;
	d__1 = -a;
	c = dlamc3_(&c, &d__1);
	lbeta = (integer) (c + qtr);

/*        Now determine whether rounding or chopping occurs,  by addin
g a
          bit  less  than  beta/2  and a  bit  more  than  beta/2  to
 a. */

	b = (doublereal) lbeta;
	d__1 = b / 2;
	d__2 = -b / 100;
	f = dlamc3_(&d__1, &d__2);
	c = dlamc3_(&f, &a);
	if (c == a) {
	    lrnd = TRUE_;
	} else {
	    lrnd = FALSE_;
	}
	d__1 = b / 2;
	d__2 = b / 100;
	f = dlamc3_(&d__1, &d__2);
	c = dlamc3_(&f, &a);
	if (lrnd && c == a) {
	    lrnd = FALSE_;
	}

/*        Try and decide whether rounding is done in the  IEEE  'round
 to
          nearest' style. B/2 is half a unit in the last place of the
two
          numbers A and SAVEC. Furthermore, A is even, i.e. has last
bit
          zero, and SAVEC is odd. Thus adding B/2 to A should not  cha
nge
          A, but adding B/2 to SAVEC should change SAVEC. */

	d__1 = b / 2;
	t1 = dlamc3_(&d__1, &a);
	d__1 = b / 2;
	t2 = dlamc3_(&d__1, &savec);
	lieee1 = t1 == a && t2 > savec && lrnd;

/*        Now find  the  mantissa, t.  It should  be the  integer part
 of
          log to the base beta of a,  however it is safer to determine
  t
          by powering.  So we find t as the smallest positive integer
for
          which

             fl( beta**t + 1.0 ) = 1.0. */

	lt = 0;
	a = 1.;
	c = 1.;

/* +       WHILE( C.EQ.ONE )LOOP */
L30:
	if (c == one) {
	    ++lt;
	    a *= lbeta;
	    c = dlamc3_(&a, &one);
	    d__1 = -a;
	    c = dlamc3_(&c, &d__1);
	    goto L30;
	}
/* +       END WHILE */

    }

    *beta = lbeta;
    *t = lt;
    *rnd = lrnd;
    *ieee1 = lieee1;
    return 0;

/*     End of DLAMC1 */

} /* dlamc1_ */


/* Subroutine */ int dlamc2_(integer *beta, integer *t, logical *rnd,
	doublereal *eps, integer *emin, doublereal *rmin, integer *emax,
	doublereal *rmax)
{
/*  -- LAPACK auxiliary routine (version 3.0) --
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
       Courant Institute, Argonne National Lab, and Rice University
       October 31, 1992


    Purpose
    =======

    DLAMC2 determines the machine parameters specified in its argument
    list.

    Arguments
    =========

    BETA    (output) INTEGER
            The base of the machine.

    T       (output) INTEGER
            The number of ( BETA ) digits in the mantissa.

    RND     (output) LOGICAL
            Specifies whether proper rounding  ( RND = .TRUE. )  or
            chopping  ( RND = .FALSE. )  occurs in addition. This may not

            be a reliable guide to the way in which the machine performs

            its arithmetic.

    EPS     (output) DOUBLE PRECISION
            The smallest positive number such that

               fl( 1.0 - EPS ) .LT. 1.0,

            where fl denotes the computed value.

    EMIN    (output) INTEGER
            The minimum exponent before (gradual) underflow occurs.

    RMIN    (output) DOUBLE PRECISION
            The smallest normalized number for the machine, given by
            BASE**( EMIN - 1 ), where  BASE  is the floating point value

            of BETA.

    EMAX    (output) INTEGER
            The maximum exponent before overflow occurs.

    RMAX    (output) DOUBLE PRECISION
            The largest positive number for the machine, given by
            BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point

            value of BETA.

    Further Details
    ===============

    The computation of  EPS  is based on a routine PARANOIA by
    W. Kahan of the University of California at Berkeley.

   =====================================================================
*/

    /* Initialized data */
    static logical first = TRUE_;
    static logical iwarn = FALSE_;
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2, d__3, d__4, d__5;
    /* Builtin functions */
    double pow_di(doublereal *, integer *);
    /* Local variables */
    static logical ieee;
    static doublereal half;
    static logical lrnd;
    static doublereal leps, zero, a, b, c;
    static integer i, lbeta;
    static doublereal rbase;
    static integer lemin, lemax, gnmin;
    static doublereal small;
    static integer gpmin;
    static doublereal third, lrmin, lrmax, sixth;
    extern /* Subroutine */ int dlamc1_(integer *, integer *, logical *,
	    logical *);
    extern doublereal dlamc3_(doublereal *, doublereal *);
    static logical lieee1;
    extern /* Subroutine */ int dlamc4_(integer *, doublereal *, integer *),
	    dlamc5_(integer *, integer *, integer *, logical *, integer *,
	    doublereal *);
    static integer lt, ngnmin, ngpmin;
    static doublereal one, two;



    if (first) {
	first = FALSE_;
	zero = 0.;
	one = 1.;
	two = 2.;

/*        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values
 of
          BETA, T, RND, EPS, EMIN and RMIN.

          Throughout this routine  we use the function  DLAMC3  to ens
ure
          that relevant values are stored  and not held in registers,
 or
          are not affected by optimizers.

          DLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1.
*/

	dlamc1_(&lbeta, &lt, &lrnd, &lieee1);

/*        Start to find EPS. */

	b = (doublereal) lbeta;
	i__1 = -lt;
	a = pow_di(&b, &i__1);
	leps = a;

/*        Try some tricks to see whether or not this is the correct  E
PS. */

	b = two / 3;
	half = one / 2;
	d__1 = -half;
	sixth = dlamc3_(&b, &d__1);
	third = dlamc3_(&sixth, &sixth);
	d__1 = -half;
	b = dlamc3_(&third, &d__1);
	b = dlamc3_(&b, &sixth);
	b = abs(b);
	if (b < leps) {
	    b = leps;
	}

	leps = 1.;

/* +       WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP */
L10:
	if (leps > b && b > zero) {
	    leps = b;
	    d__1 = half * leps;
/* Computing 5th power */
	    d__3 = two, d__4 = d__3, d__3 *= d__3;
/* Computing 2nd power */
	    d__5 = leps;
	    d__2 = d__4 * (d__3 * d__3) * (d__5 * d__5);
	    c = dlamc3_(&d__1, &d__2);
	    d__1 = -c;
	    c = dlamc3_(&half, &d__1);
	    b = dlamc3_(&half, &c);
	    d__1 = -b;
	    c = dlamc3_(&half, &d__1);
	    b = dlamc3_(&half, &c);
	    goto L10;
	}
/* +       END WHILE */

	if (a < leps) {
	    leps = a;
	}

/*        Computation of EPS complete.

          Now find  EMIN.  Let A = + or - 1, and + or - (1 + BASE**(-3
)).
          Keep dividing  A by BETA until (gradual) underflow occurs. T
his
          is detected when we cannot recover the previous A. */

	rbase = one / lbeta;
	small = one;
	for (i = 1; i <= 3; ++i) {
	    d__1 = small * rbase;
	    small = dlamc3_(&d__1, &zero);
/* L20: */
	}
	a = dlamc3_(&one, &small);
	dlamc4_(&ngpmin, &one, &lbeta);
	d__1 = -one;
	dlamc4_(&ngnmin, &d__1, &lbeta);
	dlamc4_(&gpmin, &a, &lbeta);
	d__1 = -a;
	dlamc4_(&gnmin, &d__1, &lbeta);
	ieee = FALSE_;

	if (ngpmin == ngnmin && gpmin == gnmin) {
	    if (ngpmin == gpmin) {
		lemin = ngpmin;
/*            ( Non twos-complement machines, no gradual under
flow;
                e.g.,  VAX ) */
	    } else if (gpmin - ngpmin == 3) {
		lemin = ngpmin - 1 + lt;
		ieee = TRUE_;
/*            ( Non twos-complement machines, with gradual und
erflow;
                e.g., IEEE standard followers ) */
	    } else {
		lemin = min(ngpmin,gpmin);
/*            ( A guess; no known machine ) */
		iwarn = TRUE_;
	    }

	} else if (ngpmin == gpmin && ngnmin == gnmin) {
	    if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1) {
		lemin = max(ngpmin,ngnmin);
/*            ( Twos-complement machines, no gradual underflow
;
                e.g., CYBER 205 ) */
	    } else {
		lemin = min(ngpmin,ngnmin);
/*            ( A guess; no known machine ) */
		iwarn = TRUE_;
	    }

	} else if ((i__1 = ngpmin - ngnmin, abs(i__1)) == 1 && gpmin == gnmin)
		 {
	    if (gpmin - min(ngpmin,ngnmin) == 3) {
		lemin = max(ngpmin,ngnmin) - 1 + lt;
/*            ( Twos-complement machines with gradual underflo
w;
                no known machine ) */
	    } else {
		lemin = min(ngpmin,ngnmin);
/*            ( A guess; no known machine ) */
		iwarn = TRUE_;
	    }

	} else {
/* Computing MIN */
	    i__1 = min(ngpmin,ngnmin), i__1 = min(i__1,gpmin);
	    lemin = min(i__1,gnmin);
/*         ( A guess; no known machine ) */
	    iwarn = TRUE_;
	}
/* **
   Comment out this if block if EMIN is ok */
	if (iwarn) {
	    first = TRUE_;
	    printf("\n\n WARNING. The value EMIN may be incorrect:- ");
	    printf("EMIN = %8i\n",lemin);
	    printf("If, after inspection, the value EMIN looks acceptable");
            printf("please comment out \n the IF block as marked within the");
            printf("code of routine DLAMC2, \n otherwise supply EMIN");
            printf("explicitly.\n");
	}
/* **

          Assume IEEE arithmetic if we found denormalised  numbers abo
ve,
          or if arithmetic seems to round in the  IEEE style,  determi
ned
          in routine DLAMC1. A true IEEE machine should have both  thi
ngs
          true; however, faulty machines may have one or the other. */

	ieee = ieee || lieee1;

/*        Compute  RMIN by successive division by  BETA. We could comp
ute
          RMIN as BASE**( EMIN - 1 ),  but some machines underflow dur
ing
          this computation. */

	lrmin = 1.;
	i__1 = 1 - lemin;
	for (i = 1; i <= 1-lemin; ++i) {
	    d__1 = lrmin * rbase;
	    lrmin = dlamc3_(&d__1, &zero);
/* L30: */
	}

/*        Finally, call DLAMC5 to compute EMAX and RMAX. */

	dlamc5_(&lbeta, &lt, &lemin, &ieee, &lemax, &lrmax);
    }

    *beta = lbeta;
    *t = lt;
    *rnd = lrnd;
    *eps = leps;
    *emin = lemin;
    *rmin = lrmin;
    *emax = lemax;
    *rmax = lrmax;

    return 0;


/*     End of DLAMC2 */

} /* dlamc2_ */
#endif


doublereal dlamc3_(doublereal *a, doublereal *b)
{
/*  -- LAPACK auxiliary routine (version 3.0) --
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
       Courant Institute, Argonne National Lab, and Rice University
       October 31, 1992


    Purpose
    =======

    DLAMC3  is intended to force  A  and  B  to be stored prior to doing

    the addition of  A  and  B ,  for use in situations where optimizers

    might hold one of these in a register.

    Arguments
    =========

    A, B    (input) DOUBLE PRECISION
            The values A and B.

   =====================================================================
*/
/* >>Start of File<<
       System generated locals */
    volatile doublereal ret_val;



    ret_val = *a + *b;

    return ret_val;

/*     End of DLAMC3 */

} /* dlamc3_ */


#ifndef HAVE_CONFIG
/* Subroutine */ int dlamc4_(integer *emin, doublereal *start, integer *base)
{
/*  -- LAPACK auxiliary routine (version 2.0) --
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
       Courant Institute, Argonne National Lab, and Rice University
       October 31, 1992


    Purpose
    =======

    DLAMC4 is a service routine for DLAMC2.

    Arguments
    =========

    EMIN    (output) EMIN
            The minimum exponent before (gradual) underflow, computed by

            setting A = START and dividing by BASE until the previous A
            can not be recovered.

    START   (input) DOUBLE PRECISION
            The starting point for determining EMIN.

    BASE    (input) INTEGER
            The base of the machine.

   =====================================================================
*/
    /* System generated locals */
    integer i__1;
    doublereal d__1;
    /* Local variables */
    static doublereal zero, a;
    static integer i;
    static doublereal rbase, b1, b2, c1, c2, d1, d2;
    extern doublereal dlamc3_(doublereal *, doublereal *);
    static doublereal one;



    a = *start;
    one = 1.;
    rbase = one / *base;
    zero = 0.;
    *emin = 1;
    d__1 = a * rbase;
    b1 = dlamc3_(&d__1, &zero);
    c1 = a;
    c2 = a;
    d1 = a;
    d2 = a;
/* +    WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
      $       ( D1.EQ.A ).AND.( D2.EQ.A )      )LOOP */
L10:
    if (c1 == a && c2 == a && d1 == a && d2 == a) {
	--(*emin);
	a = b1;
	d__1 = a / *base;
	b1 = dlamc3_(&d__1, &zero);
	d__1 = b1 * *base;
	c1 = dlamc3_(&d__1, &zero);
	d1 = zero;
	i__1 = *base;
	for (i = 1; i <= *base; ++i) {
	    d1 += b1;
/* L20: */
	}
	d__1 = a * rbase;
	b2 = dlamc3_(&d__1, &zero);
	d__1 = b2 / rbase;
	c2 = dlamc3_(&d__1, &zero);
	d2 = zero;
	i__1 = *base;
	for (i = 1; i <= *base; ++i) {
	    d2 += b2;
/* L30: */
	}
	goto L10;
    }
/* +    END WHILE */

    return 0;

/*     End of DLAMC4 */

} /* dlamc4_ */


/* Subroutine */ int dlamc5_(integer *beta, integer *p, integer *emin,
	logical *ieee, integer *emax, doublereal *rmax)
{
/*  -- LAPACK auxiliary routine (version 3.0) --
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
       Courant Institute, Argonne National Lab, and Rice University
       October 31, 1992


    Purpose
    =======

    DLAMC5 attempts to compute RMAX, the largest machine floating-point
    number, without overflow.  It assumes that EMAX + abs(EMIN) sum
    approximately to a power of 2.  It will fail on machines where this
    assumption does not hold, for example, the Cyber 205 (EMIN = -28625,

    EMAX = 28718).  It will also fail if the value supplied for EMIN is
    too large (i.e. too close to zero), probably with overflow.

    Arguments
    =========

    BETA    (input) INTEGER
            The base of floating-point arithmetic.

    P       (input) INTEGER
            The number of base BETA digits in the mantissa of a
            floating-point value.

    EMIN    (input) INTEGER
            The minimum exponent before (gradual) underflow.

    IEEE    (input) LOGICAL
            A logical flag specifying whether or not the arithmetic
            system is thought to comply with the IEEE standard.

    EMAX    (output) INTEGER
            The largest exponent before overflow

    RMAX    (output) DOUBLE PRECISION
            The largest machine floating-point number.

   =====================================================================



       First compute LEXP and UEXP, two powers of 2 that bound
       abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
       approximately to the bound that is closest to abs(EMIN).
       (EMAX is the exponent of the required number RMAX). */
    /* Table of constant values */
    static doublereal c_b5 = 0.;

    /* System generated locals */
    integer i__1;
    doublereal d__1;
    /* Local variables */
    static integer lexp;
    static doublereal oldy;
    static integer uexp, i;
    static doublereal y, z;
    static integer nbits;
    extern doublereal dlamc3_(doublereal *, doublereal *);
    static doublereal recbas;
    static integer exbits, expsum, try__;



    lexp = 1;
    exbits = 1;
L10:
    try__ = lexp << 1;
    if (try__ <= -(*emin)) {
	lexp = try__;
	++exbits;
	goto L10;
    }
    if (lexp == -(*emin)) {
	uexp = lexp;
    } else {
	uexp = try__;
	++exbits;
    }

/*     Now -LEXP is less than or equal to EMIN, and -UEXP is greater
       than or equal to EMIN. EXBITS is the number of bits needed to
       store the exponent. */

    if (uexp + *emin > -lexp - *emin) {
	expsum = lexp << 1;
    } else {
	expsum = uexp << 1;
    }

/*     EXPSUM is the exponent range, approximately equal to
       EMAX - EMIN + 1 . */

    *emax = expsum + *emin - 1;
    nbits = exbits + 1 + *p;

/*     NBITS is the total number of bits needed to store a
       floating-point number. */

    if (nbits % 2 == 1 && *beta == 2) {

/*        Either there are an odd number of bits used to store a
          floating-point number, which is unlikely, or some bits are

          not used in the representation of numbers, which is possible
,
          (e.g. Cray machines) or the mantissa has an implicit bit,
          (e.g. IEEE machines, Dec Vax machines), which is perhaps the

          most likely. We have to assume the last alternative.
          If this is true, then we need to reduce EMAX by one because

          there must be some way of representing zero in an implicit-b
it
          system. On machines like Cray, we are reducing EMAX by one

          unnecessarily. */

	--(*emax);
    }

    if (*ieee) {

/*        Assume we are on an IEEE machine which reserves one exponent

          for infinity and NaN. */

	--(*emax);
    }

/*     Now create RMAX, the largest machine number, which should
       be equal to (1.0 - BETA**(-P)) * BETA**EMAX .

       First compute 1.0 - BETA**(-P), being careful that the
       result is less than 1.0 . */

    recbas = 1. / *beta;
    z = *beta - 1.;
    y = 0.;
    i__1 = *p;
    for (i = 1; i <= *p; ++i) {
	z *= recbas;
	if (y < 1.) {
	    oldy = y;
	}
	y = dlamc3_(&y, &z);
/* L20: */
    }
    if (y >= 1.) {
	y = oldy;
    }

/*     Now multiply by BETA**EMAX to get RMAX. */

    i__1 = *emax;
    for (i = 1; i <= *emax; ++i) {
	d__1 = y * *beta;
	y = dlamc3_(&d__1, &c_b5);
/* L30: */
    }

    *rmax = y;
    return 0;

/*     End of DLAMC5 */

} /* dlamc5_ */
#endif