sentiment-analysis-roberta-base-V1.3
This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9733
- Accuracy: 0.7033
- Precision Macro: 0.7074
- Recall Macro: 0.6760
- F1 Macro: 0.6838
- Precision Weighted: 0.7054
- Recall Weighted: 0.7033
- F1 Weighted: 0.6967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 3407
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|
0.0883 | 0.4545 | 20 | 1.3057 | 0.6752 | 0.6693 | 0.6745 | 0.6689 | 0.6878 | 0.6752 | 0.6785 |
0.0096 | 0.9091 | 40 | 1.6201 | 0.7033 | 0.6995 | 0.6998 | 0.6959 | 0.7108 | 0.7033 | 0.7035 |
0.2317 | 1.3636 | 60 | 1.7050 | 0.7340 | 0.7271 | 0.7238 | 0.7246 | 0.7338 | 0.7340 | 0.7331 |
0.0225 | 1.8182 | 80 | 1.6905 | 0.7110 | 0.7077 | 0.6911 | 0.6963 | 0.7097 | 0.7110 | 0.7074 |
0.2277 | 2.2727 | 100 | 1.8978 | 0.7059 | 0.7028 | 0.6830 | 0.6864 | 0.7056 | 0.7059 | 0.7001 |
0.3325 | 2.7273 | 120 | 1.9733 | 0.7033 | 0.7074 | 0.6760 | 0.6838 | 0.7054 | 0.7033 | 0.6967 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for IMA-StreamSolve/sentiment-analysis-roberta-base-V1.3
Base model
FacebookAI/roberta-base