sentiment-analysis-roberta-base-V1.3

This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9733
  • Accuracy: 0.7033
  • Precision Macro: 0.7074
  • Recall Macro: 0.6760
  • F1 Macro: 0.6838
  • Precision Weighted: 0.7054
  • Recall Weighted: 0.7033
  • F1 Weighted: 0.6967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 3407
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro Precision Weighted Recall Weighted F1 Weighted
0.0883 0.4545 20 1.3057 0.6752 0.6693 0.6745 0.6689 0.6878 0.6752 0.6785
0.0096 0.9091 40 1.6201 0.7033 0.6995 0.6998 0.6959 0.7108 0.7033 0.7035
0.2317 1.3636 60 1.7050 0.7340 0.7271 0.7238 0.7246 0.7338 0.7340 0.7331
0.0225 1.8182 80 1.6905 0.7110 0.7077 0.6911 0.6963 0.7097 0.7110 0.7074
0.2277 2.2727 100 1.8978 0.7059 0.7028 0.6830 0.6864 0.7056 0.7059 0.7001
0.3325 2.7273 120 1.9733 0.7033 0.7074 0.6760 0.6838 0.7054 0.7033 0.6967

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
5
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for IMA-StreamSolve/sentiment-analysis-roberta-base-V1.3

Finetuned
(1566)
this model