license: mit | |
datasets: | |
- lisn519010/QM9 | |
language: | |
- en | |
metrics: | |
- mae | |
- accuracy | |
- mse | |
- r_squared | |
pipeline_tag: graph-ml | |
``` | |
pip install torch_scatter rdkit | |
pip install torch_geometric | |
``` | |
### example | |
```python | |
from transformers import AutoModel | |
device = 'cpu' | |
smiles = ['CCCC', 'C#C/C(C)=C(/[CH2])C', 'NNNNN'] | |
model = AutoModel.from_pretrained("Huhujingjing/custom-gcn", trust_remote_code=True).to(device) | |
output = model.predict_smiles(smiles) | |
print(output) | |
``` |