TR-Fin-Table-Structure-HoixiFinetuned-Overdose

This model is a fine-tuned version of microsoft/table-transformer-structure-recognition-v1.1-all on the tr-fin_table dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3453

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.5699 12.5 50 1.8167
2.4601 25.0 100 1.6425
2.2612 37.5 150 1.6247
2.2122 50.0 200 1.5704
1.8015 62.5 250 1.5473
2.0555 75.0 300 1.5278
2.3249 87.5 350 1.5308
1.4308 100.0 400 1.5316
1.9009 112.5 450 1.5131
2.2087 125.0 500 1.5006
2.0473 137.5 550 1.5212
2.5294 150.0 600 1.5379
1.9833 162.5 650 1.5652
1.8314 175.0 700 1.4976
2.4367 187.5 750 1.5416
1.9989 200.0 800 1.5043
1.8754 212.5 850 1.5266
2.0064 225.0 900 1.5051
2.0185 237.5 950 1.5313
1.6792 250.0 1000 1.4967
1.7105 262.5 1050 1.4732
1.9245 275.0 1100 1.5032
1.4862 287.5 1150 1.5018
2.1234 300.0 1200 1.4667
1.7904 312.5 1250 1.4761
2.4147 325.0 1300 1.4684
1.8115 337.5 1350 1.4711
1.9528 350.0 1400 1.4457
1.9951 362.5 1450 1.4618
1.5924 375.0 1500 1.4597
1.9166 387.5 1550 1.4513
1.8729 400.0 1600 1.4332
2.0891 412.5 1650 1.4299
2.1724 425.0 1700 1.4578
2.0618 437.5 1750 1.4791
1.7166 450.0 1800 1.4734
2.027 462.5 1850 1.4736
1.7804 475.0 1900 1.4461
2.3921 487.5 1950 1.4398
1.8792 500.0 2000 1.4345
2.1287 512.5 2050 1.4477
1.5598 525.0 2100 1.4608
1.7381 537.5 2150 1.4428
1.8059 550.0 2200 1.4423
1.7971 562.5 2250 1.4109
1.6301 575.0 2300 1.4341
1.9655 587.5 2350 1.4502
1.4477 600.0 2400 1.4378
1.7368 612.5 2450 1.4445
1.9277 625.0 2500 1.4349
1.8093 637.5 2550 1.4542
1.8594 650.0 2600 1.4462
1.7637 662.5 2650 1.4250
1.9192 675.0 2700 1.4681
1.86 687.5 2750 1.4827
1.8954 700.0 2800 1.4187
1.4728 712.5 2850 1.4129
1.6828 725.0 2900 1.4113
1.7694 737.5 2950 1.4035
1.805 750.0 3000 1.4134
1.8506 762.5 3050 1.4135
1.8127 775.0 3100 1.4057
1.9829 787.5 3150 1.4102
2.0491 800.0 3200 1.4216
1.549 812.5 3250 1.3648
1.8095 825.0 3300 1.4064
1.6556 837.5 3350 1.3776
1.5418 850.0 3400 1.3942
1.5569 862.5 3450 1.4009
2.3074 875.0 3500 1.4011
1.6733 887.5 3550 1.4032
1.9263 900.0 3600 1.3799
1.9946 912.5 3650 1.3972
1.4845 925.0 3700 1.3853
1.9587 937.5 3750 1.4146
1.7828 950.0 3800 1.4037
2.012 962.5 3850 1.4235
1.817 975.0 3900 1.4007
2.0893 987.5 3950 1.4095
2.1338 1000.0 4000 1.3824
1.8228 1012.5 4050 1.3843
1.6272 1025.0 4100 1.4122
1.6202 1037.5 4150 1.3909
1.4482 1050.0 4200 1.3589
1.949 1062.5 4250 1.3605
2.0954 1075.0 4300 1.3869
1.4728 1087.5 4350 1.3944
1.5916 1100.0 4400 1.3825
1.7988 1112.5 4450 1.3682
1.5051 1125.0 4500 1.3719
1.8492 1137.5 4550 1.4000
1.6146 1150.0 4600 1.3886
1.9732 1162.5 4650 1.3769
1.7256 1175.0 4700 1.3717
1.9683 1187.5 4750 1.3849
1.6818 1200.0 4800 1.3951
1.5879 1212.5 4850 1.3903
1.8743 1225.0 4900 1.3988
1.7887 1237.5 4950 1.3970
1.7302 1250.0 5000 1.3774
1.6503 1262.5 5050 1.4183
1.6207 1275.0 5100 1.3892
1.9589 1287.5 5150 1.4226
1.9163 1300.0 5200 1.4142
1.869 1312.5 5250 1.3777
1.601 1325.0 5300 1.3743
1.5548 1337.5 5350 1.3871
1.6482 1350.0 5400 1.4068
1.545 1362.5 5450 1.4012
1.292 1375.0 5500 1.4138
1.5313 1387.5 5550 1.4066
1.5981 1400.0 5600 1.4022
1.6622 1412.5 5650 1.4069
1.7446 1425.0 5700 1.3957
1.9459 1437.5 5750 1.4085
1.6468 1450.0 5800 1.4191
1.6107 1462.5 5850 1.3973
1.5986 1475.0 5900 1.3834
1.6157 1487.5 5950 1.3983
1.7203 1500.0 6000 1.3696
1.7985 1512.5 6050 1.3884
1.9865 1525.0 6100 1.3951
1.5754 1537.5 6150 1.3935
1.7058 1550.0 6200 1.3856
1.7909 1562.5 6250 1.3916
2.0516 1575.0 6300 1.3532
1.787 1587.5 6350 1.4099
1.6804 1600.0 6400 1.4122
1.8824 1612.5 6450 1.3876
1.4672 1625.0 6500 1.3845
1.5871 1637.5 6550 1.3900
1.899 1650.0 6600 1.3777
1.3322 1662.5 6650 1.3765
1.6055 1675.0 6700 1.3556
2.226 1687.5 6750 1.3798
1.3981 1700.0 6800 1.3695
1.6295 1712.5 6850 1.3579
1.5333 1725.0 6900 1.3714
1.5442 1737.5 6950 1.3709
1.2871 1750.0 7000 1.3615
1.6814 1762.5 7050 1.3742
1.4199 1775.0 7100 1.3683
1.6349 1787.5 7150 1.3593
1.4781 1800.0 7200 1.3633
1.9904 1812.5 7250 1.3705
1.6171 1825.0 7300 1.3768
1.7736 1837.5 7350 1.3753
1.7629 1850.0 7400 1.3719
1.6829 1862.5 7450 1.3687
1.4467 1875.0 7500 1.3606
1.8322 1887.5 7550 1.3759
1.9977 1900.0 7600 1.3839
1.6281 1912.5 7650 1.3877
1.4727 1925.0 7700 1.3922
1.739 1937.5 7750 1.3922
2.0781 1950.0 7800 1.4001
1.8195 1962.5 7850 1.3875
1.7775 1975.0 7900 1.3743
1.5131 1987.5 7950 1.3774
1.5687 2000.0 8000 1.3767
1.6019 2012.5 8050 1.3773
1.2421 2025.0 8100 1.3663
1.5391 2037.5 8150 1.3599
1.8665 2050.0 8200 1.3744
1.7484 2062.5 8250 1.3667
1.5384 2075.0 8300 1.3483
1.4885 2087.5 8350 1.3664
1.8017 2100.0 8400 1.3662
1.4904 2112.5 8450 1.3577
1.6576 2125.0 8500 1.3727
1.5057 2137.5 8550 1.3647
1.8728 2150.0 8600 1.3558
1.8287 2162.5 8650 1.3604
1.4705 2175.0 8700 1.3586
1.6126 2187.5 8750 1.3818
1.6838 2200.0 8800 1.3756
1.5985 2212.5 8850 1.3683
1.9316 2225.0 8900 1.3554
1.7605 2237.5 8950 1.3485
1.8473 2250.0 9000 1.3679
1.5161 2262.5 9050 1.3440
1.38 2275.0 9100 1.3578
1.2987 2287.5 9150 1.3477
1.6364 2300.0 9200 1.3497
1.3951 2312.5 9250 1.3630
1.3344 2325.0 9300 1.3498
1.3916 2337.5 9350 1.3503
1.7832 2350.0 9400 1.3502
1.377 2362.5 9450 1.3512
1.3797 2375.0 9500 1.3507
1.4729 2387.5 9550 1.3533
1.5299 2400.0 9600 1.3544
1.6858 2412.5 9650 1.3447
1.3794 2425.0 9700 1.3432
1.8406 2437.5 9750 1.3449
1.8643 2450.0 9800 1.3394
1.5886 2462.5 9850 1.3452
2.065 2475.0 9900 1.3461
1.7918 2487.5 9950 1.3447
1.3398 2500.0 10000 1.3453

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
77
Safetensors
Model size
28.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hoixi/TR-Fin-Table-Structure-HoixiFinetuned-Overdose