See axolotl config
axolotl version: 0.8.0.dev0
base_model: NewEden/Hamanasu-KTO-V2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
datasets:
- path: PocketDoc/Dans-Personamaxx-Logs
type: dan-chat-advanced
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: dan-chat-advanced
- path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
type: dan-chat-advanced
- path: anthracite-org/nopm_claude_writing_fixed
type: dan-chat-advanced
- path: anthracite-org/kalo_opus_misc_240827
type: dan-chat-advanced
- path: anthracite-org/kalo_misc_part2
type: dan-chat-advanced
- path: NewEden/Claude-Instruct-5K
type: dan-chat-advanced
- path: NewEden/Claude-Instruct-2.7K
type: dan-chat-advanced
val_set_size: 0.01
output_dir: ./outputs/out
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: tavbussy
wandb_entity:
wandb_watch:
wandb_name: magnum-attempt-02
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.02
max_grad_norm: 0.2
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 40
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: ./deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
outputs/out
This model is a fine-tuned version of NewEden/Hamanasu-KTO-V2 on the PocketDoc/Dans-Personamaxx-Logs, the anthracite-org/kalo-opus-instruct-22k-no-refusal, the lodrick-the-lafted/kalo-opus-instruct-3k-filtered, the anthracite-org/nopm_claude_writing_fixed, the anthracite-org/kalo_opus_misc_240827, the anthracite-org/kalo_misc_part2, the NewEden/Claude-Instruct-5K and the NewEden/Claude-Instruct-2.7K datasets. It achieves the following results on the evaluation set:
- Loss: 1.2656
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.46 | 0.0109 | 1 | 1.4717 |
1.3692 | 0.2514 | 23 | 1.3862 |
1.3288 | 0.5027 | 46 | 1.3275 |
1.2979 | 0.7541 | 69 | 1.3008 |
2.4633 | 1.0109 | 92 | 1.2825 |
1.1345 | 1.2623 | 115 | 1.2762 |
1.1809 | 1.5137 | 138 | 1.2668 |
1.145 | 1.7650 | 161 | 1.2586 |
1.0191 | 2.0219 | 184 | 1.2563 |
1.0526 | 2.2732 | 207 | 1.2644 |
1.0341 | 2.5246 | 230 | 1.2593 |
1.0394 | 2.7760 | 253 | 1.2562 |
0.9845 | 3.0328 | 276 | 1.2571 |
0.9583 | 3.2842 | 299 | 1.2655 |
0.9715 | 3.5355 | 322 | 1.2659 |
0.9463 | 3.7869 | 345 | 1.2656 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Edens-Gate/Hamanasu-Magnum-4B-Ckpts
Finetuned
Delta-Vector/Hamanasu-4B-PT
Finetuned
Delta-Vector/Hamanasu-4B-Instruct
Finetuned
Delta-Vector/Hamanasu-4B-Instruct-KTO-V1
Finetuned
Delta-Vector/Hamanasu-4B-Instruct-KTO-V2