bert-large-uncased-hate-offensive-normal-speech-lr-2e-05

This model is a fine-tuned version of bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0097
  • Accuracy: 0.9935
  • Weighted f1: 0.9935
  • Weighted recall: 0.9935
  • Weighted precision: 0.9936
  • Micro f1: 0.9935
  • Micro recall: 0.9935
  • Micro precision: 0.9935
  • Macro f1: 0.9932
  • Macro recall: 0.9938
  • Macro precision: 0.9927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 Weighted recall Weighted precision Micro f1 Micro recall Micro precision Macro f1 Macro recall Macro precision
0.5454 1.0 153 0.0953 0.9739 0.9743 0.9739 0.9761 0.9739 0.9739 0.9739 0.9730 0.9752 0.9725
0.0682 2.0 306 0.0285 0.9902 0.9903 0.9902 0.9905 0.9902 0.9902 0.9902 0.9896 0.9903 0.9891
0.025 3.0 459 0.0381 0.9902 0.9903 0.9902 0.9905 0.9902 0.9902 0.9902 0.9896 0.9903 0.9891
0.0212 4.0 612 0.0246 0.9902 0.9903 0.9902 0.9905 0.9902 0.9902 0.9902 0.9896 0.9903 0.9891
0.0114 5.0 765 0.0097 0.9935 0.9935 0.9935 0.9936 0.9935 0.9935 0.9935 0.9932 0.9938 0.9927

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.6.dev0
  • Tokenizers 0.13.3
Downloads last month
16
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for DrishtiSharma/bert-large-uncased-hate-offensive-normal-speech-lr-2e-05

Finetuned
(131)
this model