mask2former-finetuned-ER-Mito-LD

This model is a fine-tuned version of facebook/mask2former-swin-base-IN21k-ade-semantic on the Dnq2025/Mask2former_Pretrain dataset. It achieves the following results on the evaluation set:

  • Loss: 34.0481
  • Dummy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • training_steps: 12900

Training results

Training Loss Epoch Step Validation Loss Dummy
No log 1.0 86 34.1100 1.0
43.7572 2.0 172 30.1643 1.0
32.0025 3.0 258 28.1818 1.0
26.8817 4.0 344 27.1780 1.0
24.1857 5.0 430 26.5827 1.0
22.9335 6.0 516 25.7310 1.0
21.3521 7.0 602 25.2442 1.0
21.3521 8.0 688 25.0511 1.0
20.4144 9.0 774 25.3838 1.0
18.8722 10.0 860 25.7261 1.0
18.576 11.0 946 25.0048 1.0
18.1119 12.0 1032 25.3630 1.0
17.8769 13.0 1118 25.2566 1.0
17.0204 14.0 1204 25.6023 1.0
17.0204 15.0 1290 26.3285 1.0
16.3528 16.0 1376 26.3254 1.0
16.5548 17.0 1462 26.9244 1.0
16.6848 18.0 1548 27.6294 1.0
15.4544 19.0 1634 25.7570 1.0
15.7209 20.0 1720 25.7097 1.0
15.3127 21.0 1806 27.2604 1.0
15.3127 22.0 1892 26.4286 1.0
14.9528 23.0 1978 27.5768 1.0
15.1795 24.0 2064 26.4714 1.0
14.707 25.0 2150 28.0977 1.0
14.3456 26.0 2236 26.7914 1.0
14.4534 27.0 2322 27.4079 1.0
14.4448 28.0 2408 26.8291 1.0
14.4448 29.0 2494 27.1506 1.0
14.0327 30.0 2580 27.1973 1.0
13.8785 31.0 2666 27.5062 1.0
14.3373 32.0 2752 27.9510 1.0
13.3176 33.0 2838 27.1878 1.0
13.8154 34.0 2924 25.5759 1.0
13.8962 35.0 3010 27.7627 1.0
13.8962 36.0 3096 28.8061 1.0
13.3858 37.0 3182 28.4328 1.0
12.9659 38.0 3268 27.5515 1.0
13.6813 39.0 3354 27.8206 1.0
13.3049 40.0 3440 28.6062 1.0
13.1584 41.0 3526 28.5364 1.0
12.9234 42.0 3612 29.3165 1.0
12.9234 43.0 3698 28.5156 1.0
13.1375 44.0 3784 28.2476 1.0
12.7875 45.0 3870 29.9959 1.0
12.6507 46.0 3956 28.5480 1.0
13.0131 47.0 4042 29.1117 1.0
12.3806 48.0 4128 31.2153 1.0
12.9016 49.0 4214 28.9405 1.0
12.274 50.0 4300 28.7396 1.0
12.274 51.0 4386 30.3948 1.0
12.5767 52.0 4472 29.3863 1.0
12.5965 53.0 4558 29.4516 1.0
11.9685 54.0 4644 27.2974 1.0
12.3025 55.0 4730 27.0013 1.0
12.4256 56.0 4816 27.2713 1.0
12.2008 57.0 4902 27.4054 1.0
12.2008 58.0 4988 27.9546 1.0
12.1018 59.0 5074 28.9453 1.0
12.2156 60.0 5160 29.3121 1.0
11.9526 61.0 5246 30.1903 1.0
12.1103 62.0 5332 28.8276 1.0
11.8017 63.0 5418 28.7898 1.0
11.9907 64.0 5504 28.6167 1.0
11.9907 65.0 5590 29.2822 1.0
11.6683 66.0 5676 31.4695 1.0
12.1544 67.0 5762 27.7773 1.0
11.7442 68.0 5848 29.5376 1.0
11.1493 69.0 5934 27.8916 1.0
12.0781 70.0 6020 28.4096 1.0
11.8055 71.0 6106 29.2272 1.0
11.8055 72.0 6192 29.2769 1.0
11.4811 73.0 6278 29.2552 1.0
11.5947 74.0 6364 29.2611 1.0
11.7263 75.0 6450 30.7953 1.0
11.7399 76.0 6536 30.0692 1.0
11.0851 77.0 6622 29.6803 1.0
11.5118 78.0 6708 30.7345 1.0
11.5118 79.0 6794 31.5980 1.0
11.516 80.0 6880 30.5279 1.0
11.3797 81.0 6966 30.2265 1.0
11.3335 82.0 7052 30.3816 1.0
11.2303 83.0 7138 29.3238 1.0
11.1964 84.0 7224 30.3987 1.0
11.321 85.0 7310 30.1935 1.0
11.321 86.0 7396 29.1421 1.0
11.3891 87.0 7482 31.2074 1.0
11.1347 88.0 7568 30.6735 1.0
11.1945 89.0 7654 31.2053 1.0
10.9891 90.0 7740 31.4373 1.0
11.104 91.0 7826 31.3946 1.0
11.1408 92.0 7912 31.2186 1.0
11.1408 93.0 7998 29.5871 1.0
11.0779 94.0 8084 30.4671 1.0
11.0551 95.0 8170 32.0130 1.0
10.8809 96.0 8256 30.4459 1.0
11.1123 97.0 8342 30.8415 1.0
10.7116 98.0 8428 31.0445 1.0
11.0086 99.0 8514 31.0471 1.0
11.0542 100.0 8600 31.0217 1.0
11.0542 101.0 8686 31.7885 1.0
10.8332 102.0 8772 30.6191 1.0
10.8696 103.0 8858 31.2075 1.0
10.6959 104.0 8944 32.0795 1.0
11.0688 105.0 9030 33.7820 1.0
10.6762 106.0 9116 31.9403 1.0
10.8607 107.0 9202 33.1345 1.0
10.8607 108.0 9288 31.0811 1.0
10.7504 109.0 9374 31.0663 1.0
10.7841 110.0 9460 30.0841 1.0
10.5677 111.0 9546 30.8185 1.0
11.0266 112.0 9632 32.1549 1.0
10.5912 113.0 9718 32.2208 1.0
10.6698 114.0 9804 31.5337 1.0
10.6698 115.0 9890 32.2273 1.0
10.6857 116.0 9976 31.8648 1.0
10.5977 117.0 10062 31.8058 1.0
10.6883 118.0 10148 31.7254 1.0
10.3506 119.0 10234 33.0298 1.0
10.9217 120.0 10320 33.3403 1.0
10.5332 121.0 10406 32.5384 1.0
10.5332 122.0 10492 32.2192 1.0
10.4658 123.0 10578 32.8913 1.0
10.4877 124.0 10664 33.1068 1.0
10.7404 125.0 10750 34.1187 1.0
10.2195 126.0 10836 32.4418 1.0
10.7622 127.0 10922 32.2935 1.0
10.4301 128.0 11008 33.2411 1.0
10.4301 129.0 11094 32.3692 1.0
10.6464 130.0 11180 32.6297 1.0
10.4213 131.0 11266 33.7513 1.0
10.382 132.0 11352 32.6382 1.0
10.6049 133.0 11438 33.2621 1.0
10.3039 134.0 11524 32.9468 1.0
10.3088 135.0 11610 33.4821 1.0
10.3088 136.0 11696 33.4824 1.0
10.4832 137.0 11782 32.9320 1.0
10.4149 138.0 11868 33.8853 1.0
10.2473 139.0 11954 33.5977 1.0
10.7137 140.0 12040 34.1817 1.0
10.2686 141.0 12126 34.0892 1.0
10.2581 142.0 12212 34.1113 1.0
10.2581 143.0 12298 33.9106 1.0
10.447 144.0 12384 33.3470 1.0
10.3823 145.0 12470 33.3055 1.0
10.1283 146.0 12556 33.6762 1.0
10.5364 147.0 12642 33.9977 1.0
10.1257 148.0 12728 34.0327 1.0
10.3092 149.0 12814 34.1170 1.0
10.4947 150.0 12900 33.8776 1.0

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.4.1
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
107M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Dnq2025/mask2former-finetuned-ER-Mito-LD

Finetuned
(6)
this model