MLCD-Seg / README.md
xiangan's picture
Update README.md (#1)
75adb33 verified
---
license: apache-2.0
base_model:
- DeepGlint-AI/MLCD-Embodied-7B
---
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcocog)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcocog?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-5)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-5?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-3)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-3?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcocog-1)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcocog-1?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-8)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-8?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-4)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-4?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-9)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-9?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco?p=multi-label-cluster-discrimination-for-visual)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco?p=multi-label-cluster-discrimination-for-visual)
## RefCOCO Segmentation Evaluation:
| Dataset | Split | MLCD-seg-7B | EVF-SAM | GLaMM | VisionLLM v2| LISA |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| RefCOCO | val | **83.6** | 82.4 | 79.5 | 79.2 | 74.9 |
| RefCOCO | testA | **85.3** | 84.2 | 83.2 | 82.3 | 79.1 |
| RefCOCO | testB | **81.5** | 80.2 | 76.9 | 77.0 | 72.3 |
| RefCOCO+ | val | **79.4** | 76.5 | 72.6 | 68.9 | 65.1 |
| RefCOCO+ | testA | **82.9** | 80.0 | 78.7 | 75.8 | 70.8 |
| RefCOCO+ | testB | **75.6** | 71.9 | 64.6 | 61.8 | 58.1 |
| RefCOCOg | val | **79.7** | 78.2 | 74.2 | 73.3 | 67.9 |
| RefCOCOg | test | **80.5** | 78.3 | 74.9 | 74.8 | 70.6 |
## Evaluation
If you just want to use this code, please refer to this sample below
```python
from transformers import AutoModel, AutoTokenizer
from PIL import Image
model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path
mlcd_seg = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True
).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# Assuming you have an image named test.jpg
seg_img = Image.open("test.jpg").convert('RGB')
seg_prompt = "Could you provide a segmentation mask for the right giraffe in this image?"
pred_mask = model.seg(seg_img, seg_prompt, tokenizer, force_seg=False)
```
If you want to use this code measurement dataset (e.g. refcoco), then you need to use the following method
```python
from transformers import AutoModel, AutoTokenizer
from PIL import Image
model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path
mlcd_seg = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True
).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# Assuming you have an image named test.jpg
seg_img = Image.open("test.jpg").convert('RGB')
seg_prompt = "Could you provide a segmentation mask for the right giraffe in this image?"
pred_mask = model.seg(seg_img, seg_prompt, tokenizer, force_seg=True)
```
If you want to use this code in video, please refer to this sample below
```python
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import torch
from torchvision import transforms
import subprocess
import os
# video path
video_path = "updownfunk.mp4"
input_dir = "frames"
output_dir = "mask_frames"
os.makedirs(input_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
# assert you have ffmpeg installed, mp4 -> jpg
cmd = [
"ffmpeg",
"-i", video_path,
"-vf", "fps=30", # 30FPS
"-qscale:v", "1",
os.path.join(input_dir, "frame_%04d.jpg")
]
subprocess.run(cmd)
# model path
model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path
mlcd_seg = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True
).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
# read jpgs
image_files = sorted([f for f in os.listdir(input_dir) if f.endswith(('.jpg', '.png', '.jpeg'))])
for idx, filename in enumerate(image_files, start=1):
src_path = os.path.join(input_dir, filename)
seg_img = Image.open(src_path).convert('RGB')
seg_prompt = "This <video> depicts a group of people dancing.\nCould you provide a segmentation mask for the man in pink suit?"
pred_mask = mlcd_seg.predict_forward(seg_img, seg_prompt, tokenizer, force_seg=True)
# Mask visualization
pred_mask = pred_mask.squeeze(0).cpu()
pred_mask = (pred_mask > 0.5).float()
img_tensor = transforms.ToTensor()(seg_img)
alpha = 0.2 # 20% transparency
red_mask = torch.tensor([0.0, 1.0, 0.0]).view(3, 1, 1).to(img_tensor.device) # green mask
black_bg = torch.zeros_like(img_tensor) # black background
masked_area = red_mask * alpha + img_tensor * (1 - alpha)
background = black_bg * alpha + img_tensor * (1 - alpha)
combined = torch.where(pred_mask.unsqueeze(0).bool(), masked_area, background)
combined = combined.cpu() # [3, H, W], CPU
# Save masked jpgs
new_name = f"{idx:04d}{os.path.splitext(filename)[1]}"
dst_path = os.path.join(output_dir, new_name)
transforms.ToPILImage()(combined.clamp(0, 1)).save(dst_path)
cmd = [
"ffmpeg",
"-y",
"-framerate", str(30), # fps
"-i", os.path.join(output_dir, "%04d.jpg"),
"-c:v", "libx264",
"-crf", str(23),
"-pix_fmt", "yuv420p",
"-vf", "fps=" + str(23),
"updownfunk_mask.mp4" # output video
]
# jpgs -> mp4
subprocess.run(cmd, check=True)
```
## Example
<img src="https://github.com/user-attachments/assets/85c023a1-3e0c-4ea5-a764-1eb9ee0fbddf" alt="output" width="1024"/>
<img src="https://github.com/user-attachments/assets/5b767327-bd0a-4185-8f7e-b1ab0aa260c9" alt="output" width="1024"/>
<video width="80%" controls>
<source src="https://github.com/user-attachments/assets/380dee0d-47c4-4e01-8ff0-e69e62cccd7c">
</video>
## Citations
```
@misc{mlcdseg_wukun,
author = {Wu, Kun and Xie, Yin and Zhou, Xinyu and An, Xiang, and Deng, Jiankang, and Jie, Yu},
title = {MLCD-Seg},
year = {2025},
url = {https://github.com/deepglint/unicom/tree/main/downstream},
}
```