xlmr-large-classifier-pinocchio_it_tra2-eng - MT/HT Classifier
This model is a fine-tuned version of FacebookAI/xlm-roberta-large
for distinguishing between Machine Translated (MT) and Human Translated (HT) text
(or HT1 and HT2 if using two different human translators).
Training data:
- Train: 1490, for each label: 745
- Validation: 164, for each label: 82
- Test: 214, for each label: 107
Results on the held-out test set:
- Accuracy: 0.5093
- F1-Score: 0.3787
- Precision: 0.5161
- Recall: 0.2991
label mapping
Label MT: 0
Label PE: 1 (this is the human translator)
Info
Upload date: 2025-04-24 00:00
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("DanielSc4/xlmr-large-classifier-pinocchio_it_tra2-eng")
model = AutoModelForSequenceClassification.from_pretrained("DanielSc4/xlmr-large-classifier-pinocchio_it_tra2-eng")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inp = tokenizer('This is a test', return_tensors='pt').to(device)
model = model.to(device)
out = model(**inp)
logits = out.logits
probs = logits.softmax(dim=-1)
pred = probs.argmax(dim=-1).item()
print("Predicted class: " + str(pred)) # 0 for MT, 1 for PE
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support