DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF
This model was converted to GGUF format from cognitivecomputations/Dolphin3.0-Llama3.1-8B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF --hf-file dolphin3.0-llama3.1-8b-q4_k_m.gguf -c 2048
- Downloads last month
- 50
Hardware compatibility
Log In
to view the estimation
4-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF
Base model
meta-llama/Llama-3.1-8BDatasets used to train DaKitch/Dolphin3.0-Llama3.1-8B-Q4_K_M-GGUF
Evaluation results
- averaged accuracy on IFEval (0-Shot)Open LLM Leaderboard76.210
- normalized accuracy on BBH (3-Shot)test set Open LLM Leaderboard27.630
- exact match on MATH Lvl 5 (4-Shot)test set Open LLM Leaderboard10.500
- acc_norm on GPQA (0-shot)Open LLM Leaderboard4.360
- acc_norm on MuSR (0-shot)Open LLM Leaderboard8.970
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard22.130