|
|
|
import dataclasses |
|
import json |
|
from transformers import AutoTokenizer, AutoConfig |
|
import torch |
|
from torchvision.transforms.functional import InterpolationMode |
|
import numpy as np |
|
from ml_dtypes import bfloat16 |
|
from axengine import InferenceSession |
|
from tqdm import tqdm |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
import argparse |
|
from decord import VideoReader, cpu |
|
|
|
|
|
""" |
|
pulsar2 llm_build \ |
|
--input_path ./InternVL3-2B \ |
|
--output_path ./InternVL3-2B_axmodel \ |
|
--hidden_state_type bf16 \ |
|
--prefill_len 128 \ |
|
--last_kv_cache_len 128 \ |
|
--last_kv_cache_len 256 \ |
|
--last_kv_cache_len 384 \ |
|
--last_kv_cache_len 512 \ |
|
--last_kv_cache_len 640 \ |
|
--last_kv_cache_len 768 \ |
|
--last_kv_cache_len 896 \ |
|
--last_kv_cache_len 1024 \ |
|
--last_kv_cache_len 1152 \ |
|
--last_kv_cache_len 1280 \ |
|
--last_kv_cache_len 1408 \ |
|
--last_kv_cache_len 1536 \ |
|
--last_kv_cache_len 1664 \ |
|
--last_kv_cache_len 1792 \ |
|
--last_kv_cache_len 1920 \ |
|
--last_kv_cache_len 2048 |
|
--kv_cache_len 2559 \ |
|
--chip AX650 -c 1 --parallel 28 |
|
|
|
最多支持 ? 幅图输入; 支持文本对话; |
|
""" |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def post_process(data, topk=1, topp=0.9, temperature=0.6): |
|
def top_p(l: np.ndarray, p: float) -> np.ndarray: |
|
index = np.argsort(l) |
|
res = l.copy() |
|
sum_p = 0 |
|
for i in index[::-1]: |
|
if sum_p >= p: |
|
res[i] = 0 |
|
sum_p += res[i] |
|
return res / sum_p |
|
|
|
def softmax(l: np.ndarray) -> np.ndarray: |
|
l_max = l - l.max() |
|
l_exp = np.exp(l_max) |
|
res = l_exp / np.sum(l_exp) |
|
return res.astype(np.float64) |
|
|
|
r = data.astype(np.float32) |
|
r = r.flatten() |
|
|
|
candidate_index = np.argpartition(r, -topk)[-topk:] |
|
candidate_value = r[candidate_index] |
|
|
|
candidate_value /= temperature |
|
|
|
candidate_soft = softmax(candidate_value) |
|
|
|
candidate_soft = top_p(candidate_soft, topp) |
|
candidate_soft = candidate_soft.astype(np.float64) / candidate_soft.sum() |
|
pos = np.random.multinomial(1, candidate_soft).argmax() |
|
next_token = candidate_index[pos] |
|
return next_token, candidate_index, candidate_soft |
|
|
|
|
|
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): |
|
if bound: |
|
start, end = bound[0], bound[1] |
|
else: |
|
start, end = -100000, 100000 |
|
start_idx = max(first_idx, round(start * fps)) |
|
end_idx = min(round(end * fps), max_frame) |
|
seg_size = float(end_idx - start_idx) / num_segments |
|
frame_indices = np.array([ |
|
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) |
|
for idx in range(num_segments) |
|
]) |
|
return frame_indices |
|
|
|
|
|
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): |
|
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) |
|
max_frame = len(vr) - 1 |
|
fps = float(vr.get_avg_fps()) |
|
|
|
pixel_values_list, num_patches_list = [], [] |
|
transform = build_transform(input_size=input_size) |
|
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) |
|
for frame_index in frame_indices: |
|
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') |
|
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(tile) for tile in img] |
|
pixel_values = torch.stack(pixel_values) |
|
num_patches_list.append(pixel_values.shape[0]) |
|
pixel_values_list.append(pixel_values) |
|
pixel_values = torch.cat(pixel_values_list) |
|
return pixel_values, num_patches_list |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
prompt = None |
|
parser = argparse.ArgumentParser(description="Model configuration parameters") |
|
parser.add_argument("--hf_model", type=str, default="./InternVL3-2B", |
|
help="Path to HuggingFace model") |
|
parser.add_argument("--axmodel_path", type=str, default="./InternVL3-2B_axmodel", |
|
help="Path to save compiled axmodel of llama model") |
|
parser.add_argument("--vit_model", type=str, default="./internvl3_2b_vit_slim.axmodel", |
|
help="Path to save compiled axmodel of llama model") |
|
parser.add_argument("-i", "--video", type=str, default='./examples/red-panda.mp4', |
|
help="Path to the test video.") |
|
parser.add_argument("-q", "--question", type=str, default="详细介绍一下这个视频", |
|
help="Your question that you want to ask the model.") |
|
args = parser.parse_args() |
|
|
|
|
|
hf_model_path = args.hf_model |
|
axmodel_path = args.axmodel_path |
|
vit_axmodel_path = args.vit_model |
|
video_path = args.video |
|
|
|
config = AutoConfig.from_pretrained(hf_model_path, trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(hf_model_path, trust_remote_code=True, use_fast=False) |
|
|
|
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) |
|
|
|
|
|
pixel_values_list = [e[None, ...] for e in pixel_values] |
|
if pixel_values_list is not None: |
|
print(f"输入帧数: {len(pixel_values_list)}") |
|
print("preprocess image done!") |
|
|
|
|
|
vit_session = InferenceSession(vit_axmodel_path) |
|
vit_output_list = [] |
|
for idx, pixel_values in enumerate(pixel_values_list): |
|
vit_output = vit_session.run(None, {"image": pixel_values.numpy()})[0] |
|
vit_output_list.append(vit_output.copy()) |
|
|
|
print(f"vit_output.shape is {vit_output_list[0].shape}, vit feature extract done!") |
|
|
|
question = args.question |
|
prompt = "<|im_start|>system\n你是书生·万象, 英文名是InternVL, 是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型.<|im_end|>\n" |
|
prompt += "<|im_start|>user" |
|
|
|
if len(pixel_values_list) > 0: |
|
for idx in range(len(pixel_values_list)): |
|
prompt += f"\nFrame{idx+1}: <img>" + "<IMG_CONTEXT>" * 256 + "</img>\n" |
|
|
|
prompt += f"\n{question}<|im_end|>\n<|im_start|>assistant\n" |
|
token_ids = tokenizer.encode(prompt) |
|
|
|
|
|
image_start_indices = np.where(np.array(token_ids) == 151665)[0].tolist() |
|
embeds = np.load(f"{axmodel_path}/model.embed_tokens.weight.npy") |
|
prefill_data = np.take(embeds, token_ids, axis=0) |
|
prefill_data = prefill_data.astype(bfloat16) |
|
token_len = len(token_ids) |
|
|
|
assert token_len < 2048 + 128, f"输入 prompt({token_len}) 超过最大限度!" |
|
for idx, image_start_index in enumerate(image_start_indices): |
|
image_insert_index = image_start_index + 1 |
|
prefill_data[image_insert_index : image_insert_index + 256] = vit_output_list[idx][0, :, :] |
|
|
|
|
|
lastN = 2559 |
|
cfg = config.llm_config |
|
|
|
|
|
|
|
kv_dim = cfg.hidden_size // cfg.num_attention_heads * cfg.num_key_value_heads |
|
k_caches = [ |
|
np.zeros((1, lastN, kv_dim), dtype=bfloat16) |
|
for _ in range(cfg.num_hidden_layers) |
|
] |
|
v_caches = [ |
|
np.zeros((1, lastN, kv_dim), dtype=bfloat16) |
|
for _ in range(cfg.num_hidden_layers) |
|
] |
|
|
|
prefill_decoder_sessins = [] |
|
for i in tqdm(range(cfg.num_hidden_layers), desc="Init InferenceSession"): |
|
session = InferenceSession( |
|
f"{axmodel_path}/qwen2_p128_l{i}_together.axmodel" |
|
) |
|
prefill_decoder_sessins.append(session) |
|
|
|
post_process_session = InferenceSession( |
|
f"{axmodel_path}/qwen2_post.axmodel" |
|
) |
|
print("model load done!") |
|
print("prefill token_len: ", token_len) |
|
|
|
""" |
|
prefill |
|
""" |
|
prefill_slice_len = 128 |
|
|
|
slice_indexs = [ |
|
e for e in range(token_len // prefill_slice_len + 1) |
|
] |
|
print(f"slice_indexs is {slice_indexs}") |
|
prefill_len = prefill_slice_len * slice_indexs[-1] if slice_indexs[-1] != 0 else prefill_slice_len |
|
|
|
if prefill_len > 0: |
|
for slice_index in slice_indexs: |
|
indices = np.array( |
|
list( |
|
range( |
|
slice_index * prefill_slice_len, |
|
(slice_index + 1) * prefill_slice_len, |
|
) |
|
), |
|
np.uint32, |
|
).reshape((1, prefill_slice_len)) |
|
|
|
mask = ( |
|
np.zeros((1, prefill_slice_len, prefill_slice_len * (slice_index + 1))) |
|
- 65536 |
|
) |
|
data = np.zeros((1, prefill_slice_len, cfg.hidden_size)).astype(bfloat16) |
|
for i, t in enumerate( |
|
range( |
|
slice_index * prefill_slice_len, |
|
(slice_index + 1) * prefill_slice_len, |
|
) |
|
): |
|
if t < len(token_ids): |
|
mask[:, i, : slice_index * prefill_slice_len + i + 1] = 0 |
|
data[:, i : i + 1, :] = ( |
|
prefill_data[t] |
|
.reshape((1, 1, cfg.hidden_size)) |
|
.astype(bfloat16) |
|
) |
|
|
|
if slice_index == slice_indexs[-1]: |
|
remain_len = token_len - slice_index * prefill_slice_len |
|
else: |
|
remain_len = prefill_slice_len |
|
mask = mask.astype(bfloat16) |
|
for i in range(cfg.num_hidden_layers): |
|
input_feed = { |
|
"K_cache": ( |
|
k_caches[i][:, 0 : prefill_slice_len * slice_index, :] |
|
if slice_index |
|
else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16) |
|
), |
|
"V_cache": ( |
|
v_caches[i][:, 0 : prefill_slice_len * slice_index, :] |
|
if slice_index |
|
else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16) |
|
), |
|
"indices": indices, |
|
"input": data, |
|
"mask": mask, |
|
} |
|
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=slice_index + 1) |
|
k_caches[i][ |
|
:, |
|
slice_index |
|
* prefill_slice_len : slice_index |
|
* prefill_slice_len + remain_len, |
|
:, |
|
] = outputs[0][:, :remain_len, :] |
|
v_caches[i][ |
|
:, |
|
slice_index |
|
* prefill_slice_len : slice_index |
|
* prefill_slice_len + remain_len, |
|
:, |
|
] = outputs[1][:, :remain_len, :] |
|
data = outputs[2] |
|
|
|
print("slice prefill done", slice_index) |
|
post_out = post_process_session.run( |
|
None, |
|
{ |
|
"input": data[ |
|
:, token_len - (len(slice_indexs) - 1) * prefill_slice_len - 1, None, : |
|
] |
|
} |
|
)[0] |
|
next_token, posssible_tokens, possible_soft = post_process(post_out) |
|
posibles = [tokenizer.decode([t]) for t in posssible_tokens] |
|
posible_soft = [str((t, s)) for t, s in zip(posibles, possible_soft)] |
|
token_ids.append(next_token) |
|
|
|
|
|
kv_cache_len = 2559 |
|
mask = np.zeros((1, 1, kv_cache_len + 1), dtype=np.float32).astype(bfloat16) |
|
mask[:, :, :kv_cache_len] -= 65536 |
|
if prefill_len > 0: |
|
mask[:, :, :token_len] = 0 |
|
for start_indice in tqdm(range(kv_cache_len), desc="Decode"): |
|
if prefill_len > 0 and start_indice < token_len: |
|
continue |
|
|
|
next_token = token_ids[start_indice] |
|
indices = np.array([start_indice], np.uint32).reshape((1, 1)) |
|
data = embeds[next_token, :].reshape((1, 1, cfg.hidden_size)).astype(bfloat16) |
|
for i in range(cfg.num_hidden_layers): |
|
input_feed = { |
|
"K_cache": k_caches[i], |
|
"V_cache": v_caches[i], |
|
"indices": indices, |
|
"input": data, |
|
"mask": mask, |
|
} |
|
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=0) |
|
k_caches[i][:, start_indice, :] = outputs[0][:, :, :] |
|
v_caches[i][:, start_indice, :] = outputs[1][:, :, :] |
|
data = outputs[2] |
|
mask[..., start_indice] = 0 |
|
if start_indice < token_len - 1: |
|
pass |
|
else: |
|
post_out = post_process_session.run(None, {"input": data})[0] |
|
next_token, posssible_tokens, possible_soft = post_process(post_out) |
|
token_ids.append(next_token) |
|
if next_token == tokenizer.eos_token_id and next_token > token_len: |
|
print("hit eos!") |
|
break |
|
|
|
|
|
print(tokenizer.decode(token_ids[token_len:], skip_special_tokens=True)) |
|
|