File size: 16,337 Bytes
5abe660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# import llm_utils
import dataclasses
import json
from transformers import AutoTokenizer, AutoConfig
import torch
from torchvision.transforms.functional import InterpolationMode
import numpy as np
from ml_dtypes import bfloat16
from axengine import InferenceSession
from tqdm import tqdm
import torchvision.transforms as T
from PIL import Image
import argparse
from decord import VideoReader, cpu


"""
pulsar2 llm_build \
    --input_path ./InternVL3-2B   \
    --output_path ./InternVL3-2B_axmodel \
    --hidden_state_type bf16 \
    --prefill_len 128 \
    --last_kv_cache_len 128 \
    --last_kv_cache_len 256 \
    --last_kv_cache_len 384 \
    --last_kv_cache_len 512 \
    --last_kv_cache_len 640 \
    --last_kv_cache_len 768 \
    --last_kv_cache_len 896 \
    --last_kv_cache_len 1024 \
    --last_kv_cache_len 1152 \
    --last_kv_cache_len 1280 \
    --last_kv_cache_len 1408 \
    --last_kv_cache_len 1536 \
    --last_kv_cache_len 1664 \
    --last_kv_cache_len 1792 \
    --last_kv_cache_len 1920 \
    --last_kv_cache_len 2048
    --kv_cache_len 2559 \
    --chip AX650 -c 1 --parallel 28

最多支持 ? 幅图输入; 支持文本对话;
"""

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

# def load_image(image_file, input_size=448, max_num=12):
#     image = Image.open(image_file).convert('RGB')
#     transform = build_transform(input_size=input_size)
#     images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
#     pixel_values = [transform(image) for image in images]
#     pixel_values = torch.stack(pixel_values)
#     return pixel_values

def post_process(data, topk=1, topp=0.9, temperature=0.6):
    def top_p(l: np.ndarray, p: float) -> np.ndarray:
        index = np.argsort(l)
        res = l.copy()
        sum_p = 0
        for i in index[::-1]:
            if sum_p >= p:
                res[i] = 0
            sum_p += res[i]
        return res / sum_p

    def softmax(l: np.ndarray) -> np.ndarray:
        l_max = l - l.max()
        l_exp = np.exp(l_max)
        res = l_exp / np.sum(l_exp)
        return res.astype(np.float64)

    r = data.astype(np.float32)
    r = r.flatten()
    # topk
    candidate_index = np.argpartition(r, -topk)[-topk:]
    candidate_value = r[candidate_index]
    # temperature
    candidate_value /= temperature
    # softmax
    candidate_soft = softmax(candidate_value)
    # topp
    candidate_soft = top_p(candidate_soft, topp)
    candidate_soft = candidate_soft.astype(np.float64) / candidate_soft.sum()
    pos = np.random.multinomial(1, candidate_soft).argmax()
    next_token = candidate_index[pos]
    return next_token, candidate_index, candidate_soft


def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([
        int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
        for idx in range(num_segments)
    ])
    return frame_indices


def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list


if __name__ == "__main__":

    prompt = None
    parser = argparse.ArgumentParser(description="Model configuration parameters")
    parser.add_argument("--hf_model", type=str, default="./InternVL3-2B",
                        help="Path to HuggingFace model")
    parser.add_argument("--axmodel_path", type=str, default="./InternVL3-2B_axmodel",
                        help="Path to save compiled axmodel of llama model")
    parser.add_argument("--vit_model", type=str, default="./internvl3_2b_vit_slim.axmodel",
                        help="Path to save compiled axmodel of llama model")
    parser.add_argument("-i", "--video", type=str, default='./examples/red-panda.mp4',
                        help="Path to the test video.")
    parser.add_argument("-q", "--question", type=str, default="详细介绍一下这个视频",
                        help="Your question that you want to ask the model.")
    args = parser.parse_args()


    hf_model_path = args.hf_model
    axmodel_path = args.axmodel_path
    vit_axmodel_path = args.vit_model
    video_path = args.video

    config = AutoConfig.from_pretrained(hf_model_path, trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(hf_model_path, trust_remote_code=True, use_fast=False)
    # set the max number of tiles in `max_num`
    pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
    # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}

    pixel_values_list = [e[None, ...] for e in pixel_values]
    if pixel_values_list is not None:
        print(f"输入帧数: {len(pixel_values_list)}")
        print("preprocess image done!")

        # extract img feature by vit
        vit_session = InferenceSession(vit_axmodel_path)
        vit_output_list = []
        for idx, pixel_values in enumerate(pixel_values_list):
            vit_output = vit_session.run(None, {"image": pixel_values.numpy()})[0]
            vit_output_list.append(vit_output.copy()) # 避免 vit 输出结果使用同一块内存

        print(f"vit_output.shape is {vit_output_list[0].shape}, vit feature extract done!")

    question = args.question
    prompt = "<|im_start|>system\n你是书生·万象, 英文名是InternVL, 是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型.<|im_end|>\n"
    prompt += "<|im_start|>user"

    if len(pixel_values_list) > 0:
        for idx in range(len(pixel_values_list)):
            prompt += f"\nFrame{idx+1}: <img>" + "<IMG_CONTEXT>" * 256 + "</img>\n"

    prompt += f"\n{question}<|im_end|>\n<|im_start|>assistant\n"
    token_ids = tokenizer.encode(prompt)

    # 图像理解
    image_start_indices = np.where(np.array(token_ids) == 151665)[0].tolist() # <img> tag
    embeds = np.load(f"{axmodel_path}/model.embed_tokens.weight.npy")
    prefill_data = np.take(embeds, token_ids, axis=0)
    prefill_data = prefill_data.astype(bfloat16)
    token_len = len(token_ids)
    # assert token_len > 128 * 3, f"token len is {token_len}" # TODO: 如果缺少这个条件, 会报错!
    assert token_len < 2048 + 128, f"输入 prompt({token_len}) 超过最大限度!"
    for idx, image_start_index in enumerate(image_start_indices):
        image_insert_index = image_start_index + 1
        prefill_data[image_insert_index : image_insert_index + 256] = vit_output_list[idx][0, :, :]
    ##################################

    lastN = 2559
    cfg = config.llm_config
    # cfg = config
    # cfg.num_hidden_layers = 24

    kv_dim = cfg.hidden_size // cfg.num_attention_heads * cfg.num_key_value_heads
    k_caches = [
        np.zeros((1, lastN, kv_dim), dtype=bfloat16)
        for _ in range(cfg.num_hidden_layers)
    ]
    v_caches = [
        np.zeros((1, lastN, kv_dim), dtype=bfloat16)
        for _ in range(cfg.num_hidden_layers)
    ]

    prefill_decoder_sessins = []
    for i in tqdm(range(cfg.num_hidden_layers), desc="Init InferenceSession"):
        session = InferenceSession(
            f"{axmodel_path}/qwen2_p128_l{i}_together.axmodel"
        )
        prefill_decoder_sessins.append(session)

    post_process_session = InferenceSession(
        f"{axmodel_path}/qwen2_post.axmodel"
    )
    print("model load done!")
    print("prefill token_len: ", token_len)

    """
        prefill
    """
    prefill_slice_len = 128
    # slice_indexs = [0, 1, 2, 3, 4, 5, 6, 7, 8]
    slice_indexs = [
        e for e in range(token_len // prefill_slice_len + 1)
    ]
    print(f"slice_indexs is {slice_indexs}")
    prefill_len = prefill_slice_len * slice_indexs[-1] if slice_indexs[-1] != 0 else prefill_slice_len # 这里的 128 就是 prefill_slice_len

    if prefill_len > 0:
        for slice_index in slice_indexs:
            indices = np.array(
                list(
                    range(
                        slice_index * prefill_slice_len,
                        (slice_index + 1) * prefill_slice_len,
                    )
                ),
                np.uint32,
            ).reshape((1, prefill_slice_len))

            mask = (
                np.zeros((1, prefill_slice_len, prefill_slice_len * (slice_index + 1)))
                - 65536
            )
            data = np.zeros((1, prefill_slice_len, cfg.hidden_size)).astype(bfloat16)
            for i, t in enumerate(
                range(
                    slice_index * prefill_slice_len,
                    (slice_index + 1) * prefill_slice_len,
                )
            ):
                if t < len(token_ids):
                    mask[:, i, : slice_index * prefill_slice_len + i + 1] = 0
                    data[:, i : i + 1, :] = (
                        prefill_data[t]
                        .reshape((1, 1, cfg.hidden_size))
                        .astype(bfloat16)
                    )

            if slice_index == slice_indexs[-1]:
                remain_len = token_len - slice_index * prefill_slice_len
            else:
                remain_len = prefill_slice_len
            mask = mask.astype(bfloat16)
            for i in range(cfg.num_hidden_layers):
                input_feed = {
                    "K_cache": (
                        k_caches[i][:, 0 : prefill_slice_len * slice_index, :]
                        if slice_index
                        else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16)
                    ),
                    "V_cache": (
                        v_caches[i][:, 0 : prefill_slice_len * slice_index, :]
                        if slice_index
                        else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16)
                    ),
                    "indices": indices,
                    "input": data,
                    "mask": mask,
                }
                outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=slice_index + 1)
                k_caches[i][
                    :,
                    slice_index
                    * prefill_slice_len : slice_index
                    * prefill_slice_len + remain_len,
                    :,
                ] = outputs[0][:, :remain_len, :]
                v_caches[i][
                    :,
                    slice_index
                    * prefill_slice_len : slice_index
                    * prefill_slice_len + remain_len,
                    :,
                ] = outputs[1][:, :remain_len, :]
                data = outputs[2]

            print("slice prefill done", slice_index)
        post_out = post_process_session.run(
            None,
            {
                "input": data[
                    :, token_len - (len(slice_indexs) - 1) * prefill_slice_len - 1, None, :
                ]
            }
        )[0]
        next_token, posssible_tokens, possible_soft = post_process(post_out)
        posibles = [tokenizer.decode([t]) for t in posssible_tokens]
        posible_soft = [str((t, s)) for t, s in zip(posibles, possible_soft)]
        token_ids.append(next_token)

    # set to decoder
    kv_cache_len = 2559
    mask = np.zeros((1, 1, kv_cache_len + 1), dtype=np.float32).astype(bfloat16)
    mask[:, :, :kv_cache_len] -= 65536
    if prefill_len > 0:
        mask[:, :, :token_len] = 0
    for start_indice in tqdm(range(kv_cache_len), desc="Decode"):
        if prefill_len > 0 and start_indice < token_len:
            continue

        next_token = token_ids[start_indice]
        indices = np.array([start_indice], np.uint32).reshape((1, 1))
        data = embeds[next_token, :].reshape((1, 1, cfg.hidden_size)).astype(bfloat16)
        for i in range(cfg.num_hidden_layers):
            input_feed = {
                "K_cache": k_caches[i],
                "V_cache": v_caches[i],
                "indices": indices,
                "input": data,
                "mask": mask,
            }
            outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=0)
            k_caches[i][:, start_indice, :] = outputs[0][:, :, :]
            v_caches[i][:, start_indice, :] = outputs[1][:, :, :]
            data = outputs[2]
        mask[..., start_indice] = 0
        if start_indice < token_len - 1:
            pass
        else:
            post_out = post_process_session.run(None, {"input": data})[0]
            next_token, posssible_tokens, possible_soft = post_process(post_out)
            token_ids.append(next_token)
            if next_token == tokenizer.eos_token_id and next_token > token_len:
                print("hit eos!")
                break

    # print result
    print(tokenizer.decode(token_ids[token_len:], skip_special_tokens=True))