File size: 16,337 Bytes
5abe660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# import llm_utils
import dataclasses
import json
from transformers import AutoTokenizer, AutoConfig
import torch
from torchvision.transforms.functional import InterpolationMode
import numpy as np
from ml_dtypes import bfloat16
from axengine import InferenceSession
from tqdm import tqdm
import torchvision.transforms as T
from PIL import Image
import argparse
from decord import VideoReader, cpu
"""
pulsar2 llm_build \
--input_path ./InternVL3-2B \
--output_path ./InternVL3-2B_axmodel \
--hidden_state_type bf16 \
--prefill_len 128 \
--last_kv_cache_len 128 \
--last_kv_cache_len 256 \
--last_kv_cache_len 384 \
--last_kv_cache_len 512 \
--last_kv_cache_len 640 \
--last_kv_cache_len 768 \
--last_kv_cache_len 896 \
--last_kv_cache_len 1024 \
--last_kv_cache_len 1152 \
--last_kv_cache_len 1280 \
--last_kv_cache_len 1408 \
--last_kv_cache_len 1536 \
--last_kv_cache_len 1664 \
--last_kv_cache_len 1792 \
--last_kv_cache_len 1920 \
--last_kv_cache_len 2048
--kv_cache_len 2559 \
--chip AX650 -c 1 --parallel 28
最多支持 ? 幅图输入; 支持文本对话;
"""
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
# def load_image(image_file, input_size=448, max_num=12):
# image = Image.open(image_file).convert('RGB')
# transform = build_transform(input_size=input_size)
# images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
# pixel_values = [transform(image) for image in images]
# pixel_values = torch.stack(pixel_values)
# return pixel_values
def post_process(data, topk=1, topp=0.9, temperature=0.6):
def top_p(l: np.ndarray, p: float) -> np.ndarray:
index = np.argsort(l)
res = l.copy()
sum_p = 0
for i in index[::-1]:
if sum_p >= p:
res[i] = 0
sum_p += res[i]
return res / sum_p
def softmax(l: np.ndarray) -> np.ndarray:
l_max = l - l.max()
l_exp = np.exp(l_max)
res = l_exp / np.sum(l_exp)
return res.astype(np.float64)
r = data.astype(np.float32)
r = r.flatten()
# topk
candidate_index = np.argpartition(r, -topk)[-topk:]
candidate_value = r[candidate_index]
# temperature
candidate_value /= temperature
# softmax
candidate_soft = softmax(candidate_value)
# topp
candidate_soft = top_p(candidate_soft, topp)
candidate_soft = candidate_soft.astype(np.float64) / candidate_soft.sum()
pos = np.random.multinomial(1, candidate_soft).argmax()
next_token = candidate_index[pos]
return next_token, candidate_index, candidate_soft
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
if __name__ == "__main__":
prompt = None
parser = argparse.ArgumentParser(description="Model configuration parameters")
parser.add_argument("--hf_model", type=str, default="./InternVL3-2B",
help="Path to HuggingFace model")
parser.add_argument("--axmodel_path", type=str, default="./InternVL3-2B_axmodel",
help="Path to save compiled axmodel of llama model")
parser.add_argument("--vit_model", type=str, default="./internvl3_2b_vit_slim.axmodel",
help="Path to save compiled axmodel of llama model")
parser.add_argument("-i", "--video", type=str, default='./examples/red-panda.mp4',
help="Path to the test video.")
parser.add_argument("-q", "--question", type=str, default="详细介绍一下这个视频",
help="Your question that you want to ask the model.")
args = parser.parse_args()
hf_model_path = args.hf_model
axmodel_path = args.axmodel_path
vit_axmodel_path = args.vit_model
video_path = args.video
config = AutoConfig.from_pretrained(hf_model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(hf_model_path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
pixel_values_list = [e[None, ...] for e in pixel_values]
if pixel_values_list is not None:
print(f"输入帧数: {len(pixel_values_list)}")
print("preprocess image done!")
# extract img feature by vit
vit_session = InferenceSession(vit_axmodel_path)
vit_output_list = []
for idx, pixel_values in enumerate(pixel_values_list):
vit_output = vit_session.run(None, {"image": pixel_values.numpy()})[0]
vit_output_list.append(vit_output.copy()) # 避免 vit 输出结果使用同一块内存
print(f"vit_output.shape is {vit_output_list[0].shape}, vit feature extract done!")
question = args.question
prompt = "<|im_start|>system\n你是书生·万象, 英文名是InternVL, 是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型.<|im_end|>\n"
prompt += "<|im_start|>user"
if len(pixel_values_list) > 0:
for idx in range(len(pixel_values_list)):
prompt += f"\nFrame{idx+1}: <img>" + "<IMG_CONTEXT>" * 256 + "</img>\n"
prompt += f"\n{question}<|im_end|>\n<|im_start|>assistant\n"
token_ids = tokenizer.encode(prompt)
# 图像理解
image_start_indices = np.where(np.array(token_ids) == 151665)[0].tolist() # <img> tag
embeds = np.load(f"{axmodel_path}/model.embed_tokens.weight.npy")
prefill_data = np.take(embeds, token_ids, axis=0)
prefill_data = prefill_data.astype(bfloat16)
token_len = len(token_ids)
# assert token_len > 128 * 3, f"token len is {token_len}" # TODO: 如果缺少这个条件, 会报错!
assert token_len < 2048 + 128, f"输入 prompt({token_len}) 超过最大限度!"
for idx, image_start_index in enumerate(image_start_indices):
image_insert_index = image_start_index + 1
prefill_data[image_insert_index : image_insert_index + 256] = vit_output_list[idx][0, :, :]
##################################
lastN = 2559
cfg = config.llm_config
# cfg = config
# cfg.num_hidden_layers = 24
kv_dim = cfg.hidden_size // cfg.num_attention_heads * cfg.num_key_value_heads
k_caches = [
np.zeros((1, lastN, kv_dim), dtype=bfloat16)
for _ in range(cfg.num_hidden_layers)
]
v_caches = [
np.zeros((1, lastN, kv_dim), dtype=bfloat16)
for _ in range(cfg.num_hidden_layers)
]
prefill_decoder_sessins = []
for i in tqdm(range(cfg.num_hidden_layers), desc="Init InferenceSession"):
session = InferenceSession(
f"{axmodel_path}/qwen2_p128_l{i}_together.axmodel"
)
prefill_decoder_sessins.append(session)
post_process_session = InferenceSession(
f"{axmodel_path}/qwen2_post.axmodel"
)
print("model load done!")
print("prefill token_len: ", token_len)
"""
prefill
"""
prefill_slice_len = 128
# slice_indexs = [0, 1, 2, 3, 4, 5, 6, 7, 8]
slice_indexs = [
e for e in range(token_len // prefill_slice_len + 1)
]
print(f"slice_indexs is {slice_indexs}")
prefill_len = prefill_slice_len * slice_indexs[-1] if slice_indexs[-1] != 0 else prefill_slice_len # 这里的 128 就是 prefill_slice_len
if prefill_len > 0:
for slice_index in slice_indexs:
indices = np.array(
list(
range(
slice_index * prefill_slice_len,
(slice_index + 1) * prefill_slice_len,
)
),
np.uint32,
).reshape((1, prefill_slice_len))
mask = (
np.zeros((1, prefill_slice_len, prefill_slice_len * (slice_index + 1)))
- 65536
)
data = np.zeros((1, prefill_slice_len, cfg.hidden_size)).astype(bfloat16)
for i, t in enumerate(
range(
slice_index * prefill_slice_len,
(slice_index + 1) * prefill_slice_len,
)
):
if t < len(token_ids):
mask[:, i, : slice_index * prefill_slice_len + i + 1] = 0
data[:, i : i + 1, :] = (
prefill_data[t]
.reshape((1, 1, cfg.hidden_size))
.astype(bfloat16)
)
if slice_index == slice_indexs[-1]:
remain_len = token_len - slice_index * prefill_slice_len
else:
remain_len = prefill_slice_len
mask = mask.astype(bfloat16)
for i in range(cfg.num_hidden_layers):
input_feed = {
"K_cache": (
k_caches[i][:, 0 : prefill_slice_len * slice_index, :]
if slice_index
else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16)
),
"V_cache": (
v_caches[i][:, 0 : prefill_slice_len * slice_index, :]
if slice_index
else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16)
),
"indices": indices,
"input": data,
"mask": mask,
}
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=slice_index + 1)
k_caches[i][
:,
slice_index
* prefill_slice_len : slice_index
* prefill_slice_len + remain_len,
:,
] = outputs[0][:, :remain_len, :]
v_caches[i][
:,
slice_index
* prefill_slice_len : slice_index
* prefill_slice_len + remain_len,
:,
] = outputs[1][:, :remain_len, :]
data = outputs[2]
print("slice prefill done", slice_index)
post_out = post_process_session.run(
None,
{
"input": data[
:, token_len - (len(slice_indexs) - 1) * prefill_slice_len - 1, None, :
]
}
)[0]
next_token, posssible_tokens, possible_soft = post_process(post_out)
posibles = [tokenizer.decode([t]) for t in posssible_tokens]
posible_soft = [str((t, s)) for t, s in zip(posibles, possible_soft)]
token_ids.append(next_token)
# set to decoder
kv_cache_len = 2559
mask = np.zeros((1, 1, kv_cache_len + 1), dtype=np.float32).astype(bfloat16)
mask[:, :, :kv_cache_len] -= 65536
if prefill_len > 0:
mask[:, :, :token_len] = 0
for start_indice in tqdm(range(kv_cache_len), desc="Decode"):
if prefill_len > 0 and start_indice < token_len:
continue
next_token = token_ids[start_indice]
indices = np.array([start_indice], np.uint32).reshape((1, 1))
data = embeds[next_token, :].reshape((1, 1, cfg.hidden_size)).astype(bfloat16)
for i in range(cfg.num_hidden_layers):
input_feed = {
"K_cache": k_caches[i],
"V_cache": v_caches[i],
"indices": indices,
"input": data,
"mask": mask,
}
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=0)
k_caches[i][:, start_indice, :] = outputs[0][:, :, :]
v_caches[i][:, start_indice, :] = outputs[1][:, :, :]
data = outputs[2]
mask[..., start_indice] = 0
if start_indice < token_len - 1:
pass
else:
post_out = post_process_session.run(None, {"input": data})[0]
next_token, posssible_tokens, possible_soft = post_process(post_out)
token_ids.append(next_token)
if next_token == tokenizer.eos_token_id and next_token > token_len:
print("hit eos!")
break
# print result
print(tokenizer.decode(token_ids[token_len:], skip_special_tokens=True))
|