You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

# Base requirements
pip install torch==2.1.0 --index-url https://download.pytorch.org/whl/cu118
pip install deepseek-ai-tools>=1.2.0 transformers==4.33.0

# GPU acceleration
conda install -y -c "nvidia/label/cuda-12.2.0" cuda-toolkit
pip install flash-attn==2.3.3
from deepseek import MatrixProcessor, SQLGenerator

processor = MatrixProcessor.from_pretrained("DeepSeek-AI/IMPS-SQL-DS-FEMTO-R1C")
sql_engine = SQLGenerator(processor)

# Convert natural language to optimized SQL
result = sql_engine.generate(
    "Show monthly sales totals for electronics category",
    context="""
        Tables: 
        - sales (id, category, amount, date)
        - categories (id, name)
    """,
    precision="float32",
    use_gpu=True
)
```yamlenvironment:
  matrix:
  - julia_version: 1.0
  - julia_version: latest

platform:
  - x86 # 32-bit
  - x64 # 64-bit

## uncomment the following lines to allow failures on nightly julia
## (tests will run but not make your overall status red)
matrix:
 allow_failures:
 - julia_version: latest

branches:
  only:
    - master
    - /release-.*/

notifications:
  - provider: Email
    on_build_success: false
    on_build_failure: false
    on_build_status_changed: false

install:
  - ps: iex ((new-object net.webclient).DownloadString("https://raw.githubusercontent.com/JuliaCI/Appveyor.jl/version-1/bin/install.ps1"))

build_script:
  - echo "%JL_BUILD_SCRIPT%"
  - C:\julia\bin\julia -e "%JL_BUILD_SCRIPT%"

test_script:
  - echo "%JL_TEST_SCRIPT%"
  - C:\julia\bin\julia -e "%JL_TEST_SCRIPT%"
# metrics.yaml
task: text2sql
dataset: Spider
metrics:
  - name: Execution Accuracy
    value: 82.1%
  - name: Latency
    value: 320ms

print(result.sql_query)

OUTPUT:

SELECT DATE_TRUNC('month', s.date) AS month,

SUM(s.amount) AS total_sales

FROM sales s

JOIN categories c ON s.category = c.id

WHERE c.name = 'electronics'

GROUP BY month

Dataset | Rows | Domain | License
--------|------|--------|--------
/storage/692A-D9E0/SQL-STRUCTURED | 2.1M | Structured SQL | Apache 2.0
/storage/692A-D9E0/QUERY-PAIRS | 18M | NL-to-SQL pairs | CC-BY-SA 4.0
/storage/692A-D9E0/SCHEMA-MATRICES | 4.3M | Database schemas | MIT
Benchmark | Accuracy | Speed (qps) | Memory (GB)
----------|----------|-------------|------------
Spider | 82.1% | 12.4 | 24.3
WikiSQL | 91.7% | 18.2 | 19.8
CHASE | 78.3% | 9.8 | 27.1
**Matrix Sparsity Optimization**
```python
processor.optimize(
    sparsity_threshold=0.65,
    quantization="int8",
    cache_strategy="LRU"
)

Hybrid Precision Training

from deepseek import configure_engine

configure_engine(
    mixed_precision="bf16",
    memory_optimization_level=3,
    flash_attention=True
)

Model Architecture

Architecture Diagram

Ethical Considerations

Intended Use:

  • SQL query generation
  • Database schema optimization
  • Query performance analysis

Limitations:

  • Requires explicit schema definitions
  • Limited to ANSI SQL-2023 standard
  • Maximum 8-table joins

Environmental Impact

Training Configuration:

  • 32×A100 80GB GPUs
  • 48 hours training time
  • Carbon Emissions: 412 kg CO2eq
  • Citation

@misc{deepseek2023imps,
  title={IMPS-SQL: Intelligent Matrix Processing System for SQL Optimization}, 
  author={DeepSeek AI Team},
  year={2023},
  publisher={HuggingFace},
  url={https://huggingface.co/DeepSeek-AI/IMPS-SQL-DS-FEMTO-R1C}
}

License

MIT License Model card CC-BY-4.0

Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for 9x25dillon/9xdSq-LIMPS-FemTO-R1C

Adapter
(173)
this model

Datasets used to train 9x25dillon/9xdSq-LIMPS-FemTO-R1C