kaggle / working /peft /tests /test_helpers.py
1112lee's picture
nice-model
9d6cb8e verified
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import AutoModelForCausalLM
from peft import LoraConfig, get_peft_model
from peft.helpers import check_if_peft_model
class TestCheckIsPeftModel:
def test_valid_hub_model(self):
result = check_if_peft_model("peft-internal-testing/gpt2-lora-random")
assert result is True
def test_invalid_hub_model(self):
result = check_if_peft_model("gpt2")
assert result is False
def test_nonexisting_hub_model(self):
result = check_if_peft_model("peft-internal-testing/non-existing-model")
assert result is False
def test_local_model_valid(self, tmp_path):
model = AutoModelForCausalLM.from_pretrained("gpt2")
config = LoraConfig()
model = get_peft_model(model, config)
model.save_pretrained(tmp_path / "peft-gpt2-valid")
result = check_if_peft_model(tmp_path / "peft-gpt2-valid")
assert result is True
def test_local_model_invalid(self, tmp_path):
model = AutoModelForCausalLM.from_pretrained("gpt2")
model.save_pretrained(tmp_path / "peft-gpt2-invalid")
result = check_if_peft_model(tmp_path / "peft-gpt2-invalid")
assert result is False
def test_local_model_broken_config(self, tmp_path):
with open(tmp_path / "adapter_config.json", "w") as f:
f.write('{"foo": "bar"}')
result = check_if_peft_model(tmp_path)
assert result is False
def test_local_model_non_default_name(self, tmp_path):
model = AutoModelForCausalLM.from_pretrained("gpt2")
config = LoraConfig()
model = get_peft_model(model, config, adapter_name="other")
model.save_pretrained(tmp_path / "peft-gpt2-other")
# no default adapter here
result = check_if_peft_model(tmp_path / "peft-gpt2-other")
assert result is False
# with adapter name
result = check_if_peft_model(tmp_path / "peft-gpt2-other" / "other")
assert result is True