File size: 2,583 Bytes
9d6cb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from transformers import AutoModelForCausalLM

from peft import LoraConfig, get_peft_model
from peft.helpers import check_if_peft_model


class TestCheckIsPeftModel:
    def test_valid_hub_model(self):
        result = check_if_peft_model("peft-internal-testing/gpt2-lora-random")
        assert result is True

    def test_invalid_hub_model(self):
        result = check_if_peft_model("gpt2")
        assert result is False

    def test_nonexisting_hub_model(self):
        result = check_if_peft_model("peft-internal-testing/non-existing-model")
        assert result is False

    def test_local_model_valid(self, tmp_path):
        model = AutoModelForCausalLM.from_pretrained("gpt2")
        config = LoraConfig()
        model = get_peft_model(model, config)
        model.save_pretrained(tmp_path / "peft-gpt2-valid")
        result = check_if_peft_model(tmp_path / "peft-gpt2-valid")
        assert result is True

    def test_local_model_invalid(self, tmp_path):
        model = AutoModelForCausalLM.from_pretrained("gpt2")
        model.save_pretrained(tmp_path / "peft-gpt2-invalid")
        result = check_if_peft_model(tmp_path / "peft-gpt2-invalid")
        assert result is False

    def test_local_model_broken_config(self, tmp_path):
        with open(tmp_path / "adapter_config.json", "w") as f:
            f.write('{"foo": "bar"}')

        result = check_if_peft_model(tmp_path)
        assert result is False

    def test_local_model_non_default_name(self, tmp_path):
        model = AutoModelForCausalLM.from_pretrained("gpt2")
        config = LoraConfig()
        model = get_peft_model(model, config, adapter_name="other")
        model.save_pretrained(tmp_path / "peft-gpt2-other")

        # no default adapter here
        result = check_if_peft_model(tmp_path / "peft-gpt2-other")
        assert result is False

        # with adapter name
        result = check_if_peft_model(tmp_path / "peft-gpt2-other" / "other")
        assert result is True