kaggle / working /peft /tests /test_encoder_decoder_models.py
1112lee's picture
nice-model
9d6cb8e verified
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import torch
from parameterized import parameterized
from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification
from peft import LoraConfig, TaskType, get_peft_model
from .testing_common import PeftCommonTester, PeftTestConfigManager
PEFT_ENCODER_DECODER_MODELS_TO_TEST = [
"ybelkada/tiny-random-T5ForConditionalGeneration-calibrated",
"hf-internal-testing/tiny-random-BartForConditionalGeneration",
]
FULL_GRID = {"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "task_type": "SEQ_2_SEQ_LM"}
class PeftEncoderDecoderModelTester(unittest.TestCase, PeftCommonTester):
r"""
Test if the PeftModel behaves as expected. This includes:
- test if the model has the expected methods
We use parametrized.expand for debugging purposes to test each model individually.
"""
transformers_class = AutoModelForSeq2SeqLM
def prepare_inputs_for_testing(self):
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
input_dict = {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
}
return input_dict
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs):
self._test_model_attr(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs):
self._test_adapter_name(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs):
self._test_prepare_for_training(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_save_pretrained_pickle(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_save_pretrained_selected_adapters_pickle(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs):
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"vera_kwargs": {"init_weights": [False]},
"task_type": "SEQ_2_SEQ_LM",
},
)
)
def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs):
self._test_merge_layers(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"task_type": "SEQ_2_SEQ_LM",
},
)
)
def test_mixed_adapter_batches(self, test_name, model_id, config_cls, config_kwargs):
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs)
# skip non lora models - generate does not work for prefix tuning, prompt tuning
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_generate(self, test_name, model_id, config_cls, config_kwargs):
self._test_generate(model_id, config_cls, config_kwargs)
# skip non lora models - generate does not work for prefix tuning, prompt tuning
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_generate_pos_args(self, test_name, model_id, config_cls, config_kwargs):
# positional arguments are not supported for PeftModelForSeq2SeqLM
self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs):
self._test_generate_half_prec(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs):
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_training_encoder_decoders(self, test_name, model_id, config_cls, config_kwargs):
self._test_training(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_training_encoder_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs):
self._test_training_layer_indexing(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_training_encoder_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs):
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs):
self._test_inference_safetensors(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs):
self._test_peft_model_device_map(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_delete_adapter(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, config_cls, config_kwargs):
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"adalora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"vera_kwargs": {"init_weights": [False]},
"task_type": "SEQ_2_SEQ_LM",
},
)
)
def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_unload_adapter(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"task_type": "SEQ_2_SEQ_LM",
},
)
)
def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs):
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs):
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"adalora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"vera_kwargs": {"init_weights": [False]},
"task_type": "SEQ_2_SEQ_LM",
},
)
)
def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_disable_adapter(model_id, config_cls, config_kwargs)
class PeftEncoderDecoderCustomModelTester(unittest.TestCase):
"""
A custom class to write any custom test related with Enc-Dec models
"""
def test_save_shared_tensors(self):
model_id = "hf-internal-testing/tiny-random-RobertaModel"
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all"
)
model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11)
model = get_peft_model(model, peft_config)
with tempfile.TemporaryDirectory() as tmp_dir:
# This should work fine
model.save_pretrained(tmp_dir, safe_serialization=True)