File size: 11,353 Bytes
9d6cb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest

import torch
from parameterized import parameterized
from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification

from peft import LoraConfig, TaskType, get_peft_model

from .testing_common import PeftCommonTester, PeftTestConfigManager


PEFT_ENCODER_DECODER_MODELS_TO_TEST = [
    "ybelkada/tiny-random-T5ForConditionalGeneration-calibrated",
    "hf-internal-testing/tiny-random-BartForConditionalGeneration",
]

FULL_GRID = {"model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST, "task_type": "SEQ_2_SEQ_LM"}


class PeftEncoderDecoderModelTester(unittest.TestCase, PeftCommonTester):
    r"""
    Test if the PeftModel behaves as expected. This includes:
    - test if the model has the expected methods

    We use parametrized.expand for debugging purposes to test each model individually.
    """

    transformers_class = AutoModelForSeq2SeqLM

    def prepare_inputs_for_testing(self):
        input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
        decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
        attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)

        input_dict = {
            "input_ids": input_ids,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
        }

        return input_dict

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs):
        self._test_model_attr(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs):
        self._test_adapter_name(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs):
        self._test_prepare_for_training(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs):
        self._test_save_pretrained(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_save_pretrained_pickle(self, test_name, model_id, config_cls, config_kwargs):
        self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs):
        self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_save_pretrained_selected_adapters_pickle(self, test_name, model_id, config_cls, config_kwargs):
        self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs):
        self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs)

    @parameterized.expand(
        PeftTestConfigManager.get_grid_parameters(
            {
                "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
                "lora_kwargs": {"init_lora_weights": [False]},
                "ia3_kwargs": {"init_ia3_weights": [False]},
                "vera_kwargs": {"init_weights": [False]},
                "task_type": "SEQ_2_SEQ_LM",
            },
        )
    )
    def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs):
        self._test_merge_layers(model_id, config_cls, config_kwargs)

    @parameterized.expand(
        PeftTestConfigManager.get_grid_parameters(
            {
                "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
                "lora_kwargs": {"init_lora_weights": [False]},
                "task_type": "SEQ_2_SEQ_LM",
            },
        )
    )
    def test_mixed_adapter_batches(self, test_name, model_id, config_cls, config_kwargs):
        self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs)

    # skip non lora models - generate does not work for prefix tuning, prompt tuning
    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_generate(self, test_name, model_id, config_cls, config_kwargs):
        self._test_generate(model_id, config_cls, config_kwargs)

    # skip non lora models - generate does not work for prefix tuning, prompt tuning
    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_generate_pos_args(self, test_name, model_id, config_cls, config_kwargs):
        # positional arguments are not supported for PeftModelForSeq2SeqLM
        self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs):
        self._test_generate_half_prec(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs):
        self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_training_encoder_decoders(self, test_name, model_id, config_cls, config_kwargs):
        self._test_training(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_training_encoder_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs):
        self._test_training_layer_indexing(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_training_encoder_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs):
        self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs):
        self._test_inference_safetensors(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs):
        self._test_peft_model_device_map(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs):
        self._test_delete_adapter(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_kwargs):
        self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, config_cls, config_kwargs):
        self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs)

    @parameterized.expand(
        PeftTestConfigManager.get_grid_parameters(
            {
                "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
                "lora_kwargs": {"init_lora_weights": [False]},
                "adalora_kwargs": {"init_lora_weights": [False]},
                "ia3_kwargs": {"init_ia3_weights": [False]},
                "boft_kwargs": {"init_weights": [False]},
                "vera_kwargs": {"init_weights": [False]},
                "task_type": "SEQ_2_SEQ_LM",
            },
        )
    )
    def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs):
        self._test_unload_adapter(model_id, config_cls, config_kwargs)

    @parameterized.expand(
        PeftTestConfigManager.get_grid_parameters(
            {
                "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
                "lora_kwargs": {"init_lora_weights": [False]},
                "ia3_kwargs": {"init_ia3_weights": [False]},
                "task_type": "SEQ_2_SEQ_LM",
            },
        )
    )
    def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs):
        self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs)

    @parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
    def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs):
        self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs)

    @parameterized.expand(
        PeftTestConfigManager.get_grid_parameters(
            {
                "model_ids": PEFT_ENCODER_DECODER_MODELS_TO_TEST,
                "lora_kwargs": {"init_lora_weights": [False]},
                "adalora_kwargs": {"init_lora_weights": [False]},
                "ia3_kwargs": {"init_ia3_weights": [False]},
                "boft_kwargs": {"init_weights": [False]},
                "vera_kwargs": {"init_weights": [False]},
                "task_type": "SEQ_2_SEQ_LM",
            },
        )
    )
    def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs):
        self._test_disable_adapter(model_id, config_cls, config_kwargs)


class PeftEncoderDecoderCustomModelTester(unittest.TestCase):
    """
    A custom class to write any custom test related with Enc-Dec models
    """

    def test_save_shared_tensors(self):
        model_id = "hf-internal-testing/tiny-random-RobertaModel"
        peft_config = LoraConfig(
            task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all"
        )
        model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11)
        model = get_peft_model(model, peft_config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            # This should work fine
            model.save_pretrained(tmp_dir, safe_serialization=True)