|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
from unittest.mock import Mock, call, patch |
|
|
|
import pytest |
|
import torch |
|
from parameterized import parameterized |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from peft import AdaLoraConfig, BOFTConfig, LoraConfig, PromptTuningConfig, PromptTuningInit, get_peft_model |
|
|
|
from .testing_common import PeftCommonTester, PeftTestConfigManager |
|
|
|
|
|
PEFT_DECODER_MODELS_TO_TEST = [ |
|
"hf-internal-testing/tiny-random-OPTForCausalLM", |
|
"hf-internal-testing/tiny-random-GPTNeoXForCausalLM", |
|
"hf-internal-testing/tiny-random-GPT2LMHeadModel", |
|
"hf-internal-testing/tiny-random-BloomForCausalLM", |
|
"hf-internal-testing/tiny-random-gpt_neo", |
|
"hf-internal-testing/tiny-random-GPTJForCausalLM", |
|
"hf-internal-testing/tiny-random-GPTBigCodeForCausalLM", |
|
"trl-internal-testing/tiny-random-LlamaForCausalLM", |
|
] |
|
|
|
FULL_GRID = { |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"task_type": "CAUSAL_LM", |
|
} |
|
|
|
|
|
def skip_adalora_and_gpt2(test_list): |
|
return [test for test in test_list if not (("GPT2LMHeadModel" in test[1]) and (test[2] == AdaLoraConfig))] |
|
|
|
|
|
def skip_boft_and_gpt2(test_list): |
|
return [test for test in test_list if not (("GPT2LMHeadModel" in test[1]) and (test[2] == BOFTConfig))] |
|
|
|
|
|
def skip_adalora_or_boft_and_gpt2(test_list): |
|
return [ |
|
test |
|
for test in test_list |
|
if not (("GPT2LMHeadModel" in test[1]) and ((test[2] == AdaLoraConfig) or (test[2] == BOFTConfig))) |
|
] |
|
|
|
|
|
class PeftDecoderModelTester(unittest.TestCase, PeftCommonTester): |
|
r""" |
|
Test if the PeftModel behaves as expected. This includes: |
|
- test if the model has the expected methods |
|
|
|
We use parametrized.expand for debugging purposes to test each model individually. |
|
""" |
|
|
|
transformers_class = AutoModelForCausalLM |
|
|
|
def prepare_inputs_for_testing(self): |
|
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) |
|
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) |
|
|
|
input_dict = { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
} |
|
|
|
return input_dict |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_model_attr(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_adapter_name(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) |
|
def test_prompt_tuning_text_prepare_for_training(self, test_name, model_id, config_cls, config_kwargs): |
|
|
|
if config_cls != PromptTuningConfig: |
|
return pytest.skip(f"This test does not apply to {config_cls}") |
|
|
|
config_kwargs = config_kwargs.copy() |
|
config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT |
|
config_kwargs["prompt_tuning_init_text"] = "This is a test prompt." |
|
config_kwargs["tokenizer_name_or_path"] = model_id |
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs) |
|
|
|
def test_prompt_tuning_text_tokenizer_kwargs(self): |
|
|
|
|
|
mock = Mock() |
|
orig_from_pretrained = AutoTokenizer.from_pretrained |
|
|
|
def mock_autotokenizer_from_pretrained(*args, **kwargs): |
|
mock(*args, **kwargs) |
|
return orig_from_pretrained(config.tokenizer_name_or_path) |
|
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" |
|
config = PromptTuningConfig( |
|
base_model_name_or_path=model_id, |
|
tokenizer_name_or_path=model_id, |
|
num_virtual_tokens=10, |
|
prompt_tuning_init=PromptTuningInit.TEXT, |
|
task_type="CAUSAL_LM", |
|
prompt_tuning_init_text="This is a test prompt.", |
|
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"}, |
|
) |
|
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) |
|
with patch("transformers.AutoTokenizer.from_pretrained", mock_autotokenizer_from_pretrained): |
|
model = get_peft_model(model, config) |
|
|
|
expected_call = call(model_id, trust_remote_code=True, foo="bar") |
|
assert mock.call_args == expected_call |
|
|
|
def test_prompt_tuning_config_invalid_args(self): |
|
|
|
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" |
|
with pytest.raises(ValueError, match="tokenizer_kwargs only valid when using prompt_tuning_init='TEXT'."): |
|
PromptTuningConfig( |
|
base_model_name_or_path=model_id, |
|
tokenizer_name_or_path=model_id, |
|
num_virtual_tokens=10, |
|
task_type="CAUSAL_LM", |
|
prompt_tuning_init_text="This is a test prompt.", |
|
prompt_tuning_init=PromptTuningInit.RANDOM, |
|
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"}, |
|
) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_save_pretrained(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_save_pretrained_pickle(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_save_pretrained_selected_adapters_pickle(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand( |
|
PeftTestConfigManager.get_grid_parameters( |
|
{ |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"lora_kwargs": {"init_lora_weights": [False]}, |
|
"ia3_kwargs": {"init_ia3_weights": [False]}, |
|
"boft_kwargs": {"init_weights": [False]}, |
|
"vera_kwargs": {"init_weights": [False]}, |
|
"task_type": "CAUSAL_LM", |
|
}, |
|
) |
|
) |
|
def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_merge_layers(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand( |
|
PeftTestConfigManager.get_grid_parameters( |
|
{ |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"lora_kwargs": {"init_lora_weights": [False]}, |
|
"ia3_kwargs": {"init_ia3_weights": [False]}, |
|
"boft_kwargs": {"init_weights": [False]}, |
|
"vera_kwargs": {"init_weights": [False]}, |
|
"task_type": "CAUSAL_LM", |
|
}, |
|
filter_params_func=skip_boft_and_gpt2, |
|
) |
|
) |
|
def test_merge_layers_multi(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_merge_layers_multi(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand( |
|
PeftTestConfigManager.get_grid_parameters( |
|
{ |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"lora_kwargs": {"init_lora_weights": [False]}, |
|
"ia3_kwargs": {"init_ia3_weights": [False]}, |
|
"boft_kwargs": {"init_weights": [False]}, |
|
"task_type": "CAUSAL_LM", |
|
}, |
|
) |
|
) |
|
def test_merge_layers_nan(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_merge_layers_nan(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand( |
|
PeftTestConfigManager.get_grid_parameters( |
|
{ |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"lora_kwargs": {"init_lora_weights": [False]}, |
|
"task_type": "CAUSAL_LM", |
|
}, |
|
) |
|
) |
|
def test_mixed_adapter_batches(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_generate(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_generate(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_generate_pos_args(self, test_name, model_id, config_cls, config_kwargs): |
|
|
|
self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=False) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) |
|
def test_merge_layers_fp16(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_merge_layers_fp16(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) |
|
def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_generate_half_prec(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) |
|
def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_training_decoders(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_training(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) |
|
def test_training_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_training_layer_indexing(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_training_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_inference_safetensors(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) |
|
def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_peft_model_device_map(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_delete_adapter(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand( |
|
PeftTestConfigManager.get_grid_parameters( |
|
{ |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"lora_kwargs": {"init_lora_weights": [False]}, |
|
"adalora_kwargs": {"init_lora_weights": [False]}, |
|
"ia3_kwargs": {"init_ia3_weights": [False]}, |
|
"boft_kwargs": {"init_weights": [False]}, |
|
"vera_kwargs": {"init_weights": [False]}, |
|
"task_type": "CAUSAL_LM", |
|
}, |
|
filter_params_func=skip_adalora_or_boft_and_gpt2, |
|
) |
|
) |
|
def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_unload_adapter(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand( |
|
PeftTestConfigManager.get_grid_parameters( |
|
{ |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"lora_kwargs": {"init_lora_weights": [False]}, |
|
"ia3_kwargs": {"init_ia3_weights": [False]}, |
|
"boft_kwargs": {"init_weights": [False]}, |
|
"task_type": "CAUSAL_LM", |
|
}, |
|
) |
|
) |
|
def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID)) |
|
def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) |
|
|
|
@parameterized.expand( |
|
PeftTestConfigManager.get_grid_parameters( |
|
{ |
|
"model_ids": PEFT_DECODER_MODELS_TO_TEST, |
|
"lora_kwargs": {"init_lora_weights": [False]}, |
|
"ia3_kwargs": {"init_ia3_weights": [False]}, |
|
"adalora_kwargs": {"init_lora_weights": [False]}, |
|
"boft_kwargs": {"init_weights": [False]}, |
|
"vera_kwargs": {"init_weights": [False]}, |
|
"task_type": "CAUSAL_LM", |
|
}, |
|
filter_params_func=skip_boft_and_gpt2, |
|
) |
|
) |
|
def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_disable_adapter(model_id, config_cls, config_kwargs) |
|
|
|
def test_generate_adalora_no_dropout(self): |
|
|
|
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" |
|
config_kwargs = { |
|
"target_modules": None, |
|
"task_type": "CAUSAL_LM", |
|
"lora_dropout": 0.0, |
|
} |
|
self._test_generate(model_id, AdaLoraConfig, config_kwargs) |
|
|
|
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2)) |
|
def test_passing_input_embeds_works(self, test_name, model_id, config_cls, config_kwargs): |
|
self._test_passing_input_embeds_works(test_name, model_id, config_cls, config_kwargs) |
|
|
|
def test_lora_layer_replication(self): |
|
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM" |
|
config_kwargs = { |
|
"target_modules": ["down_proj", "up_proj"], |
|
"task_type": "CAUSAL_LM", |
|
"lora_dropout": 0.0, |
|
"layer_replication": [[0, 1], [0, 2], [1, 2]], |
|
} |
|
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device) |
|
config = LoraConfig( |
|
base_model_name_or_path=model_id, |
|
**config_kwargs, |
|
) |
|
assert len(model.model.layers), "Expected 2 layers in original model." == 2 |
|
model = get_peft_model(model, config) |
|
layers = model.base_model.model.model.layers |
|
assert len(layers) == 4, "Expected 4 layers in adapted model." |
|
assert ( |
|
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr() |
|
== layers[1].mlp.up_proj.base_layer.weight.data.storage().data_ptr() |
|
and layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr() |
|
== layers[3].mlp.up_proj.base_layer.weight.data.storage().data_ptr() |
|
), "Expected layers 0-1 and 2-3 to share weights" |
|
assert ( |
|
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr() |
|
!= layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr() |
|
), "Expected layers 0 and 2 to have different weights" |
|
assert ( |
|
layers[0].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr() |
|
!= layers[1].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr() |
|
and layers[2].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr() |
|
!= layers[3].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr() |
|
), "Expected all LoRA adapters to have distinct weights" |
|
assert ( |
|
len([n for n, _ in model.named_parameters() if ".lora_A." in n]) == 8 |
|
), "Expected 8 LoRA adapters since we are adding one each for up and down." |
|
self._test_prepare_for_training(model_id, LoraConfig, config_kwargs) |
|
self._test_generate(model_id, LoraConfig, config_kwargs) |
|
|