File size: 19,102 Bytes
9d6cb8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from unittest.mock import Mock, call, patch
import pytest
import torch
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import AdaLoraConfig, BOFTConfig, LoraConfig, PromptTuningConfig, PromptTuningInit, get_peft_model
from .testing_common import PeftCommonTester, PeftTestConfigManager
PEFT_DECODER_MODELS_TO_TEST = [
"hf-internal-testing/tiny-random-OPTForCausalLM",
"hf-internal-testing/tiny-random-GPTNeoXForCausalLM",
"hf-internal-testing/tiny-random-GPT2LMHeadModel",
"hf-internal-testing/tiny-random-BloomForCausalLM",
"hf-internal-testing/tiny-random-gpt_neo",
"hf-internal-testing/tiny-random-GPTJForCausalLM",
"hf-internal-testing/tiny-random-GPTBigCodeForCausalLM",
"trl-internal-testing/tiny-random-LlamaForCausalLM",
]
FULL_GRID = {
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"task_type": "CAUSAL_LM",
}
def skip_adalora_and_gpt2(test_list):
return [test for test in test_list if not (("GPT2LMHeadModel" in test[1]) and (test[2] == AdaLoraConfig))]
def skip_boft_and_gpt2(test_list):
return [test for test in test_list if not (("GPT2LMHeadModel" in test[1]) and (test[2] == BOFTConfig))]
def skip_adalora_or_boft_and_gpt2(test_list):
return [
test
for test in test_list
if not (("GPT2LMHeadModel" in test[1]) and ((test[2] == AdaLoraConfig) or (test[2] == BOFTConfig)))
]
class PeftDecoderModelTester(unittest.TestCase, PeftCommonTester):
r"""
Test if the PeftModel behaves as expected. This includes:
- test if the model has the expected methods
We use parametrized.expand for debugging purposes to test each model individually.
"""
transformers_class = AutoModelForCausalLM
def prepare_inputs_for_testing(self):
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device)
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
input_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return input_dict
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_attributes_parametrized(self, test_name, model_id, config_cls, config_kwargs):
self._test_model_attr(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_adapter_name(self, test_name, model_id, config_cls, config_kwargs):
self._test_adapter_name(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_prepare_for_training_parametrized(self, test_name, model_id, config_cls, config_kwargs):
self._test_prepare_for_training(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_prompt_tuning_text_prepare_for_training(self, test_name, model_id, config_cls, config_kwargs):
# Test that prompt tuning works with text init
if config_cls != PromptTuningConfig:
return pytest.skip(f"This test does not apply to {config_cls}")
config_kwargs = config_kwargs.copy()
config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT
config_kwargs["prompt_tuning_init_text"] = "This is a test prompt."
config_kwargs["tokenizer_name_or_path"] = model_id
self._test_prepare_for_training(model_id, config_cls, config_kwargs)
def test_prompt_tuning_text_tokenizer_kwargs(self):
# Allow users to pass additional arguments to Tokenizer.from_pretrained
# Fix for #1032
mock = Mock()
orig_from_pretrained = AutoTokenizer.from_pretrained
def mock_autotokenizer_from_pretrained(*args, **kwargs):
mock(*args, **kwargs)
return orig_from_pretrained(config.tokenizer_name_or_path)
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
config = PromptTuningConfig(
base_model_name_or_path=model_id,
tokenizer_name_or_path=model_id,
num_virtual_tokens=10,
prompt_tuning_init=PromptTuningInit.TEXT,
task_type="CAUSAL_LM",
prompt_tuning_init_text="This is a test prompt.",
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
)
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
with patch("transformers.AutoTokenizer.from_pretrained", mock_autotokenizer_from_pretrained):
model = get_peft_model(model, config)
expected_call = call(model_id, trust_remote_code=True, foo="bar")
assert mock.call_args == expected_call
def test_prompt_tuning_config_invalid_args(self):
# Raise an error when tokenizer_kwargs is used with prompt_tuning_init!='TEXT', because this argument has no
# function in that case
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
with pytest.raises(ValueError, match="tokenizer_kwargs only valid when using prompt_tuning_init='TEXT'."):
PromptTuningConfig(
base_model_name_or_path=model_id,
tokenizer_name_or_path=model_id,
num_virtual_tokens=10,
task_type="CAUSAL_LM",
prompt_tuning_init_text="This is a test prompt.",
prompt_tuning_init=PromptTuningInit.RANDOM, # <= should not be used together with tokenizer_kwargs
tokenizer_kwargs={"trust_remote_code": True, "foo": "bar"},
)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_save_pretrained(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_save_pretrained_pickle(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_save_pretrained_selected_adapters(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_save_pretrained_selected_adapters_pickle(self, test_name, model_id, config_cls, config_kwargs):
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_from_pretrained_config_construction(self, test_name, model_id, config_cls, config_kwargs):
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"vera_kwargs": {"init_weights": [False]},
"task_type": "CAUSAL_LM",
},
)
)
def test_merge_layers(self, test_name, model_id, config_cls, config_kwargs):
self._test_merge_layers(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"vera_kwargs": {"init_weights": [False]},
"task_type": "CAUSAL_LM",
},
filter_params_func=skip_boft_and_gpt2,
)
)
def test_merge_layers_multi(self, test_name, model_id, config_cls, config_kwargs):
self._test_merge_layers_multi(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"task_type": "CAUSAL_LM",
},
)
)
def test_merge_layers_nan(self, test_name, model_id, config_cls, config_kwargs):
self._test_merge_layers_nan(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"task_type": "CAUSAL_LM",
},
)
)
def test_mixed_adapter_batches(self, test_name, model_id, config_cls, config_kwargs):
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_generate(self, test_name, model_id, config_cls, config_kwargs):
self._test_generate(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_generate_pos_args(self, test_name, model_id, config_cls, config_kwargs):
# positional args are supported for PeftModelForCausalLM
self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=False)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_merge_layers_fp16(self, test_name, model_id, config_cls, config_kwargs):
self._test_merge_layers_fp16(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_generate_half_prec(self, test_name, model_id, config_cls, config_kwargs):
self._test_generate_half_prec(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_prefix_tuning_half_prec_conversion(self, test_name, model_id, config_cls, config_kwargs):
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_training_decoders(self, test_name, model_id, config_cls, config_kwargs):
self._test_training(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_training_decoders_layer_indexing(self, test_name, model_id, config_cls, config_kwargs):
self._test_training_layer_indexing(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_training_decoders_gradient_checkpointing(self, test_name, model_id, config_cls, config_kwargs):
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_inference_safetensors(self, test_name, model_id, config_cls, config_kwargs):
self._test_inference_safetensors(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_peft_model_device_map(self, test_name, model_id, config_cls, config_kwargs):
self._test_peft_model_device_map(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_delete_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_delete_adapter(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_delete_inactive_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_adding_multiple_adapters_with_bias_raises(self, test_name, model_id, config_cls, config_kwargs):
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"adalora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"vera_kwargs": {"init_weights": [False]},
"task_type": "CAUSAL_LM",
},
filter_params_func=skip_adalora_or_boft_and_gpt2,
)
)
def test_unload_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_unload_adapter(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"task_type": "CAUSAL_LM",
},
)
)
def test_weighted_combination_of_adapters(self, test_name, model_id, config_cls, config_kwargs):
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID))
def test_training_prompt_learning_tasks(self, test_name, model_id, config_cls, config_kwargs):
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs)
@parameterized.expand(
PeftTestConfigManager.get_grid_parameters(
{
"model_ids": PEFT_DECODER_MODELS_TO_TEST,
"lora_kwargs": {"init_lora_weights": [False]},
"ia3_kwargs": {"init_ia3_weights": [False]},
"adalora_kwargs": {"init_lora_weights": [False]},
"boft_kwargs": {"init_weights": [False]},
"vera_kwargs": {"init_weights": [False]},
"task_type": "CAUSAL_LM",
},
filter_params_func=skip_boft_and_gpt2,
)
)
def test_disable_adapter(self, test_name, model_id, config_cls, config_kwargs):
self._test_disable_adapter(model_id, config_cls, config_kwargs)
def test_generate_adalora_no_dropout(self):
# test for issue #730
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
config_kwargs = {
"target_modules": None,
"task_type": "CAUSAL_LM",
"lora_dropout": 0.0,
}
self._test_generate(model_id, AdaLoraConfig, config_kwargs)
@parameterized.expand(PeftTestConfigManager.get_grid_parameters(FULL_GRID, filter_params_func=skip_boft_and_gpt2))
def test_passing_input_embeds_works(self, test_name, model_id, config_cls, config_kwargs):
self._test_passing_input_embeds_works(test_name, model_id, config_cls, config_kwargs)
def test_lora_layer_replication(self):
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
config_kwargs = {
"target_modules": ["down_proj", "up_proj"],
"task_type": "CAUSAL_LM",
"lora_dropout": 0.0,
"layer_replication": [[0, 1], [0, 2], [1, 2]],
}
model = self.transformers_class.from_pretrained(model_id).to(self.torch_device)
config = LoraConfig(
base_model_name_or_path=model_id,
**config_kwargs,
)
assert len(model.model.layers), "Expected 2 layers in original model." == 2
model = get_peft_model(model, config)
layers = model.base_model.model.model.layers
assert len(layers) == 4, "Expected 4 layers in adapted model."
assert (
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
== layers[1].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
and layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
== layers[3].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
), "Expected layers 0-1 and 2-3 to share weights"
assert (
layers[0].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
!= layers[2].mlp.up_proj.base_layer.weight.data.storage().data_ptr()
), "Expected layers 0 and 2 to have different weights"
assert (
layers[0].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
!= layers[1].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
and layers[2].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
!= layers[3].mlp.up_proj.lora_A.default.weight.data.storage().data_ptr()
), "Expected all LoRA adapters to have distinct weights"
assert (
len([n for n, _ in model.named_parameters() if ".lora_A." in n]) == 8
), "Expected 8 LoRA adapters since we are adding one each for up and down."
self._test_prepare_for_training(model_id, LoraConfig, config_kwargs)
self._test_generate(model_id, LoraConfig, config_kwargs)
|