|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
from transformers import HfArgumentParser, TrainingArguments, set_seed |
|
from trl import SFTTrainer |
|
from utils import create_and_prepare_model, create_datasets |
|
|
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
chat_template_format: Optional[str] = field( |
|
default="none", |
|
metadata={ |
|
"help": "chatml|zephyr|none. Pass `none` if the dataset is already formatted with the chat template." |
|
}, |
|
) |
|
lora_alpha: Optional[int] = field(default=16) |
|
lora_dropout: Optional[float] = field(default=0.1) |
|
lora_r: Optional[int] = field(default=64) |
|
lora_target_modules: Optional[str] = field( |
|
default="q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj", |
|
metadata={"help": "comma separated list of target modules to apply LoRA layers to"}, |
|
) |
|
use_nested_quant: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Activate nested quantization for 4bit base models"}, |
|
) |
|
bnb_4bit_compute_dtype: Optional[str] = field( |
|
default="float16", |
|
metadata={"help": "Compute dtype for 4bit base models"}, |
|
) |
|
bnb_4bit_quant_storage_dtype: Optional[str] = field( |
|
default="uint8", |
|
metadata={"help": "Quantization storage dtype for 4bit base models"}, |
|
) |
|
bnb_4bit_quant_type: Optional[str] = field( |
|
default="nf4", |
|
metadata={"help": "Quantization type fp4 or nf4"}, |
|
) |
|
use_flash_attn: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Enables Flash attention for training."}, |
|
) |
|
use_peft_lora: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Enables PEFT LoRA for training."}, |
|
) |
|
use_8bit_quantization: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Enables loading model in 8bit."}, |
|
) |
|
use_4bit_quantization: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Enables loading model in 4bit."}, |
|
) |
|
use_reentrant: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Gradient Checkpointing param. Refer the related docs"}, |
|
) |
|
use_unsloth: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Enables UnSloth for training."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
dataset_name: Optional[str] = field( |
|
default="timdettmers/openassistant-guanaco", |
|
metadata={"help": "The preference dataset to use."}, |
|
) |
|
packing: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Use packing dataset creating."}, |
|
) |
|
dataset_text_field: str = field(default="text", metadata={"help": "Dataset field to use as input text."}) |
|
max_seq_length: Optional[int] = field(default=512) |
|
append_concat_token: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "If True, appends `eos_token_id` at the end of each sample being packed."}, |
|
) |
|
add_special_tokens: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "If True, tokenizers adds special tokens to each sample being packed."}, |
|
) |
|
splits: Optional[str] = field( |
|
default="train,test", |
|
metadata={"help": "Comma separate list of the splits to use from the dataset."}, |
|
) |
|
|
|
|
|
def main(model_args, data_args, training_args): |
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
model, peft_config, tokenizer = create_and_prepare_model(model_args, data_args, training_args) |
|
|
|
|
|
model.config.use_cache = not training_args.gradient_checkpointing |
|
training_args.gradient_checkpointing = training_args.gradient_checkpointing and not model_args.use_unsloth |
|
if training_args.gradient_checkpointing: |
|
training_args.gradient_checkpointing_kwargs = {"use_reentrant": model_args.use_reentrant} |
|
|
|
|
|
train_dataset, eval_dataset = create_datasets( |
|
tokenizer, |
|
data_args, |
|
training_args, |
|
apply_chat_template=model_args.chat_template_format != "none", |
|
) |
|
|
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
tokenizer=tokenizer, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
peft_config=peft_config, |
|
packing=data_args.packing, |
|
dataset_kwargs={ |
|
"append_concat_token": data_args.append_concat_token, |
|
"add_special_tokens": data_args.add_special_tokens, |
|
}, |
|
dataset_text_field=data_args.dataset_text_field, |
|
max_seq_length=data_args.max_seq_length, |
|
) |
|
trainer.accelerator.print(f"{trainer.model}") |
|
trainer.model.print_trainable_parameters() |
|
|
|
|
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
trainer.train(resume_from_checkpoint=checkpoint) |
|
|
|
|
|
if trainer.is_fsdp_enabled: |
|
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") |
|
trainer.save_model() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
main(model_args, data_args, training_args) |
|
|