import os import sys from dataclasses import dataclass, field from typing import Optional from transformers import HfArgumentParser, TrainingArguments, set_seed from trl import SFTTrainer from utils import create_and_prepare_model, create_datasets # Define and parse arguments. @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) chat_template_format: Optional[str] = field( default="none", metadata={ "help": "chatml|zephyr|none. Pass `none` if the dataset is already formatted with the chat template." }, ) lora_alpha: Optional[int] = field(default=16) lora_dropout: Optional[float] = field(default=0.1) lora_r: Optional[int] = field(default=64) lora_target_modules: Optional[str] = field( default="q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj", metadata={"help": "comma separated list of target modules to apply LoRA layers to"}, ) use_nested_quant: Optional[bool] = field( default=False, metadata={"help": "Activate nested quantization for 4bit base models"}, ) bnb_4bit_compute_dtype: Optional[str] = field( default="float16", metadata={"help": "Compute dtype for 4bit base models"}, ) bnb_4bit_quant_storage_dtype: Optional[str] = field( default="uint8", metadata={"help": "Quantization storage dtype for 4bit base models"}, ) bnb_4bit_quant_type: Optional[str] = field( default="nf4", metadata={"help": "Quantization type fp4 or nf4"}, ) use_flash_attn: Optional[bool] = field( default=False, metadata={"help": "Enables Flash attention for training."}, ) use_peft_lora: Optional[bool] = field( default=False, metadata={"help": "Enables PEFT LoRA for training."}, ) use_8bit_quantization: Optional[bool] = field( default=False, metadata={"help": "Enables loading model in 8bit."}, ) use_4bit_quantization: Optional[bool] = field( default=False, metadata={"help": "Enables loading model in 4bit."}, ) use_reentrant: Optional[bool] = field( default=False, metadata={"help": "Gradient Checkpointing param. Refer the related docs"}, ) use_unsloth: Optional[bool] = field( default=False, metadata={"help": "Enables UnSloth for training."}, ) @dataclass class DataTrainingArguments: dataset_name: Optional[str] = field( default="timdettmers/openassistant-guanaco", metadata={"help": "The preference dataset to use."}, ) packing: Optional[bool] = field( default=False, metadata={"help": "Use packing dataset creating."}, ) dataset_text_field: str = field(default="text", metadata={"help": "Dataset field to use as input text."}) max_seq_length: Optional[int] = field(default=512) append_concat_token: Optional[bool] = field( default=False, metadata={"help": "If True, appends `eos_token_id` at the end of each sample being packed."}, ) add_special_tokens: Optional[bool] = field( default=False, metadata={"help": "If True, tokenizers adds special tokens to each sample being packed."}, ) splits: Optional[str] = field( default="train,test", metadata={"help": "Comma separate list of the splits to use from the dataset."}, ) def main(model_args, data_args, training_args): # Set seed for reproducibility set_seed(training_args.seed) # model model, peft_config, tokenizer = create_and_prepare_model(model_args, data_args, training_args) # gradient ckpt model.config.use_cache = not training_args.gradient_checkpointing training_args.gradient_checkpointing = training_args.gradient_checkpointing and not model_args.use_unsloth if training_args.gradient_checkpointing: training_args.gradient_checkpointing_kwargs = {"use_reentrant": model_args.use_reentrant} # datasets train_dataset, eval_dataset = create_datasets( tokenizer, data_args, training_args, apply_chat_template=model_args.chat_template_format != "none", ) # trainer trainer = SFTTrainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, peft_config=peft_config, packing=data_args.packing, dataset_kwargs={ "append_concat_token": data_args.append_concat_token, "add_special_tokens": data_args.add_special_tokens, }, dataset_text_field=data_args.dataset_text_field, max_seq_length=data_args.max_seq_length, ) trainer.accelerator.print(f"{trainer.model}") trainer.model.print_trainable_parameters() # train checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint trainer.train(resume_from_checkpoint=checkpoint) # saving final model if trainer.is_fsdp_enabled: trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") trainer.save_model() if __name__ == "__main__": parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() main(model_args, data_args, training_args)