|
<!--Copyright 2023 The HuggingFace Team. All rights reserved. |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
|
the License. You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
|
specific language governing permissions and limitations under the License. |
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be |
|
rendered properly in your Markdown viewer. |
|
|
|
--> |
|
|
|
# LoHa |
|
|
|
Low-Rank Hadamard Product ([LoHa](https://huggingface.co/papers/2108.06098)), is similar to LoRA except it approximates the large weight matrix with more low-rank matrices and combines them with the Hadamard product. This method is even more parameter-efficient than LoRA and achieves comparable performance. |
|
|
|
The abstract from the paper is: |
|
|
|
*In this work, we propose a communication-efficient parameterization, FedPara, for federated learning (FL) to overcome the burdens on frequent model uploads and downloads. Our method re-parameterizes weight parameters of layers using low-rank weights followed by the Hadamard product. Compared to the conventional low-rank parameterization, our FedPara method is not restricted to low-rank constraints, and thereby it has a far larger capacity. This property enables to achieve comparable performance while requiring 3 to 10 times lower communication costs than the model with the original layers, which is not achievable by the traditional low-rank methods. The efficiency of our method can be further improved by combining with other efficient FL optimizers. In addition, we extend our method to a personalized FL application, pFedPara, which separates parameters into global and local ones. We show that pFedPara outperforms competing personalized FL methods with more than three times fewer parameters*. |
|
|
|
## LoHaConfig |
|
|
|
[[autodoc]] tuners.loha.config.LoHaConfig |
|
|
|
## LoHaModel |
|
|
|
[[autodoc]] tuners.loha.model.LoHaModel |