|
<!--Copyright 2023 The HuggingFace Team. All rights reserved. |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
|
the License. You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
|
specific language governing permissions and limitations under the License. |
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be |
|
rendered properly in your Markdown viewer. |
|
|
|
--> |
|
|
|
# IA3 |
|
|
|
Infused Adapter by Inhibiting and Amplifying Inner Activations, or [IA3](https://hf.co/papers/2205.05638), is a method that adds three learned vectors to rescale the keys and values of the self-attention and encoder-decoder attention layers, and the intermediate activation of the position-wise feed-forward network. |
|
|
|
The abstract from the paper is: |
|
|
|
*Few-shot in-context learning (ICL) enables pre-trained language models to perform a previously-unseen task without any gradient-based training by feeding a small number of training examples as part of the input. ICL incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made. Parameter-efficient fine-tuning (PEFT) (e.g. adapter modules, prompt tuning, sparse update methods, etc.) offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task. In this paper, we rigorously compare few-shot ICL and PEFT and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs. Along the way, we introduce a new PEFT method called (IA)^3 that scales activations by learned vectors, attaining stronger performance while only introducing a relatively tiny amount of new parameters. We also propose a simple recipe based on the T0 model called T-Few that can be applied to new tasks without task-specific tuning or modifications. We validate the effectiveness of T-Few on completely unseen tasks by applying it to the RAFT benchmark, attaining super-human performance for the first time and outperforming the state-of-the-art by 6% absolute. All of the code used in our experiments is publicly available*. |
|
|
|
## IA3Config |
|
|
|
[[autodoc]] tuners.ia3.config.IA3Config |
|
|
|
## IA3Model |
|
|
|
[[autodoc]] tuners.ia3.model.IA3Model |