File size: 8,532 Bytes
d42d6b4
 
 
 
 
046f9ee
 
 
d42d6b4
 
 
 
 
 
 
 
 
 
 
046f9ee
d42d6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
library_name: transformers
license: other
base_model: facebook/mask2former-swin-tiny-coco-instance
tags:
- image-segmentation
- instance-segmentation
- vision
- generated_from_trainer
model-index:
- name: finetune-instance-segmentation-mini-mask2former_augmentation_default
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune-instance-segmentation-mini-mask2former_augmentation_default

This model is a fine-tuned version of [facebook/mask2former-swin-tiny-coco-instance](https://huggingface.co/facebook/mask2former-swin-tiny-coco-instance) on the jsalavedra/strawberry_disease dataset.
It achieves the following results on the evaluation set:
- Loss: 16.2566
- Map: 0.6229
- Map 50: 0.8172
- Map 75: 0.6824
- Map Small: 0.35
- Map Medium: 0.401
- Map Large: 0.7146
- Mar 1: 0.4279
- Mar 10: 0.7886
- Mar 100: 0.831
- Mar Small: 0.5
- Mar Medium: 0.7108
- Mar Large: 0.8802
- Map Angular leafspot: 0.54
- Mar 100 Angular leafspot: 0.8135
- Map Anthracnose fruit rot: 0.405
- Mar 100 Anthracnose fruit rot: 0.7118
- Map Blossom blight: 0.7372
- Mar 100 Blossom blight: 0.8159
- Map Gray mold: 0.5767
- Mar 100 Gray mold: 0.7648
- Map Leaf spot: 0.8783
- Mar 100 Leaf spot: 0.9416
- Map Powdery mildew fruit: 0.5019
- Mar 100 Powdery mildew fruit: 0.8833
- Map Powdery mildew leaf: 0.7209
- Mar 100 Powdery mildew leaf: 0.8863

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Angular leafspot | Mar 100 Angular leafspot | Map Anthracnose fruit rot | Mar 100 Anthracnose fruit rot | Map Blossom blight | Mar 100 Blossom blight | Map Gray mold | Mar 100 Gray mold | Map Leaf spot | Mar 100 Leaf spot | Map Powdery mildew fruit | Mar 100 Powdery mildew fruit | Map Powdery mildew leaf | Mar 100 Powdery mildew leaf |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:--------------------:|:------------------------:|:-------------------------:|:-----------------------------:|:------------------:|:----------------------:|:-------------:|:-----------------:|:-------------:|:-----------------:|:------------------------:|:----------------------------:|:-----------------------:|:---------------------------:|
| 48.1383       | 1.0   | 91   | 32.7441         | 0.072  | 0.0944 | 0.0789 | 0.0008    | 0.028      | 0.1218    | 0.1444 | 0.2815 | 0.3583  | 0.2       | 0.1977     | 0.4277    | 0.0097               | 0.4962                   | 0.001                     | 0.0529                        | 0.0025             | 0.0727                 | 0.0527        | 0.2222            | 0.1818        | 0.8401            | 0.0002                   | 0.05                         | 0.2557                  | 0.7737                      |
| 28.1321       | 2.0   | 182  | 26.8257         | 0.2203 | 0.2891 | 0.2395 | 0.1267    | 0.1186     | 0.2617    | 0.2987 | 0.5351 | 0.5913  | 0.4       | 0.3726     | 0.6649    | 0.0203               | 0.5981                   | 0.0049                    | 0.1706                        | 0.1769             | 0.65                   | 0.1961        | 0.6324            | 0.6355        | 0.9082            | 0.0087                   | 0.3444                       | 0.4998                  | 0.8353                      |
| 23.6192       | 3.0   | 273  | 23.0934         | 0.3141 | 0.408  | 0.3423 | 0.2133    | 0.195      | 0.3834    | 0.3621 | 0.6516 | 0.6971  | 0.4       | 0.4291     | 0.7797    | 0.0457               | 0.7288                   | 0.0175                    | 0.4059                        | 0.4873             | 0.7205                 | 0.2984        | 0.7102            | 0.7575        | 0.9249            | 0.0257                   | 0.5444                       | 0.5666                  | 0.8451                      |
| 20.6054       | 4.0   | 364  | 21.1837         | 0.398  | 0.5303 | 0.434  | 0.2115    | 0.237      | 0.4998    | 0.3852 | 0.7062 | 0.7568  | 0.5       | 0.5624     | 0.8306    | 0.264                | 0.7365                   | 0.0368                    | 0.5882                        | 0.5386             | 0.75                   | 0.434         | 0.7287            | 0.7965        | 0.9331            | 0.107                    | 0.7056                       | 0.6088                  | 0.8557                      |
| 19.4288       | 5.0   | 455  | 19.9111         | 0.4366 | 0.5924 | 0.4686 | 0.1758    | 0.256      | 0.5269    | 0.4005 | 0.7295 | 0.7887  | 0.4       | 0.5917     | 0.8558    | 0.3157               | 0.7788                   | 0.0679                    | 0.6471                        | 0.5715             | 0.7636                 | 0.4758        | 0.7389            | 0.8107        | 0.9315            | 0.1825                   | 0.8                          | 0.632                   | 0.8608                      |
| 17.8867       | 6.0   | 546  | 18.9302         | 0.5064 | 0.6834 | 0.5457 | 0.35      | 0.3232     | 0.5693    | 0.395  | 0.7462 | 0.8006  | 0.45      | 0.6427     | 0.8583    | 0.3472               | 0.7731                   | 0.1802                    | 0.7                           | 0.6516             | 0.7909                 | 0.5193        | 0.7398            | 0.8209        | 0.9362            | 0.3584                   | 0.8                          | 0.6671                  | 0.8639                      |
| 16.9985       | 7.0   | 637  | 18.2692         | 0.5458 | 0.7266 | 0.6036 | 0.2667    | 0.353      | 0.6138    | 0.4145 | 0.7701 | 0.8142  | 0.4       | 0.6488     | 0.876     | 0.4325               | 0.775                    | 0.2601                    | 0.7118                        | 0.7072             | 0.8159                 | 0.5295        | 0.7472            | 0.8566        | 0.9424            | 0.3656                   | 0.8333                       | 0.6692                  | 0.8737                      |
| 16.1493       | 8.0   | 728  | 17.3118         | 0.5707 | 0.7557 | 0.6298 | 0.4036    | 0.3684     | 0.6464    | 0.4175 | 0.7831 | 0.8275  | 0.45      | 0.6815     | 0.8822    | 0.4954               | 0.7923                   | 0.3283                    | 0.7588                        | 0.7096             | 0.8159                 | 0.5474        | 0.7528            | 0.8717        | 0.9436            | 0.3381                   | 0.8444                       | 0.7045                  | 0.8847                      |
| 15.3879       | 9.0   | 819  | 16.7216         | 0.5907 | 0.7634 | 0.6611 | 0.35      | 0.3824     | 0.6636    | 0.4145 | 0.7808 | 0.8258  | 0.45      | 0.6663     | 0.8821    | 0.5305               | 0.8019                   | 0.3748                    | 0.7529                        | 0.7337             | 0.8136                 | 0.5658        | 0.7574            | 0.8738        | 0.9377            | 0.3421                   | 0.8333                       | 0.7144                  | 0.8835                      |
| 14.4614       | 10.0  | 910  | 16.2566         | 0.6229 | 0.8172 | 0.6824 | 0.35      | 0.401      | 0.7146    | 0.4279 | 0.7886 | 0.831   | 0.5       | 0.7108     | 0.8802    | 0.54                 | 0.8135                   | 0.405                     | 0.7118                        | 0.7372             | 0.8159                 | 0.5767        | 0.7648            | 0.8783        | 0.9416            | 0.5019                   | 0.8833                       | 0.7209                  | 0.8863                      |


### Framework versions

- Transformers 4.50.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0