Upload folder using huggingface_hub
Browse files- parameter.json +6 -0
- run.py +54 -0
- train.py +36 -60
parameter.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hidden_size": 2048,
|
3 |
+
"sequence_length": 5,
|
4 |
+
"learning_rate": 0.0001,
|
5 |
+
"model_path": "tiny_llm_hidden2048.pth"
|
6 |
+
}
|
run.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import json
|
4 |
+
from tqdm import tqdm, trange
|
5 |
+
|
6 |
+
# Model parameters
|
7 |
+
parameters = json.loads(open("parameter.json").read())
|
8 |
+
model_path = parameters["model_path"]
|
9 |
+
|
10 |
+
# Define the simple RNN model
|
11 |
+
class SimpleRNN(nn.Module):
|
12 |
+
def __init__(self, input_size, hidden_size, output_size):
|
13 |
+
super(SimpleRNN, self).__init__()
|
14 |
+
self.hidden_size = hidden_size
|
15 |
+
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
|
16 |
+
self.fc = nn.Linear(hidden_size, output_size)
|
17 |
+
|
18 |
+
def forward(self, x, hidden):
|
19 |
+
x = torch.nn.functional.one_hot(x, num_classes=input_size).float()
|
20 |
+
out, hidden = self.rnn(x.unsqueeze(0), hidden)
|
21 |
+
out = self.fc(out[:, -1, :]) # Take last time step's output
|
22 |
+
return out, hidden
|
23 |
+
|
24 |
+
model = torch.load(model_path, weights_only=False)
|
25 |
+
with open("vocab.json", "r") as f:
|
26 |
+
chars = json.loads(f.read())
|
27 |
+
char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
28 |
+
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
29 |
+
print("Loaded pre-trained model.")
|
30 |
+
|
31 |
+
input_size = len(chars)
|
32 |
+
hidden_size = parameters["hidden_size"]
|
33 |
+
output_size = len(chars)
|
34 |
+
|
35 |
+
# Text generation function
|
36 |
+
def generate_text(start_text, length):
|
37 |
+
model.eval()
|
38 |
+
hidden = torch.zeros(1, 1, hidden_size)
|
39 |
+
input_seq = torch.tensor([char_to_idx[ch] for ch in start_text])
|
40 |
+
|
41 |
+
generated_text = start_text
|
42 |
+
for _ in trange(length):
|
43 |
+
output, hidden = model(input_seq, hidden)
|
44 |
+
predicted_idx = output.argmax().item()
|
45 |
+
generated_text += idx_to_char[predicted_idx]
|
46 |
+
input_seq = torch.cat((input_seq[1:], torch.tensor([predicted_idx])))
|
47 |
+
|
48 |
+
return generated_text
|
49 |
+
|
50 |
+
# Generate some text
|
51 |
+
while True:
|
52 |
+
prompt = input("Ask LLM: ")
|
53 |
+
length = int(input("Length of text: "))
|
54 |
+
print("LLM Output: ", generate_text(prompt, length))
|
train.py
CHANGED
@@ -13,13 +13,14 @@ char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
|
13 |
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
14 |
|
15 |
# Model parameters
|
|
|
16 |
input_size = len(chars)
|
17 |
-
hidden_size =
|
18 |
output_size = len(chars)
|
19 |
-
sequence_length =
|
20 |
epochs = 1000
|
21 |
-
learning_rate =
|
22 |
-
model_path = "
|
23 |
|
24 |
# Create training data (input-output pairs)
|
25 |
train_data = []
|
@@ -42,67 +43,42 @@ class SimpleRNN(nn.Module):
|
|
42 |
out = self.fc(out[:, -1, :]) # Take last time step's output
|
43 |
return out, hidden
|
44 |
|
45 |
-
# Load model if available
|
46 |
if os.path.exists(model_path):
|
47 |
model = torch.load(model_path, weights_only=False)
|
48 |
-
|
49 |
-
chars = json.loads(f.read())
|
50 |
-
char_to_idx = {ch: i for i, ch in enumerate(chars)}
|
51 |
-
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
52 |
-
print("Loaded pre-trained model.")
|
53 |
else:
|
54 |
print("Training new model...")
|
55 |
-
# Initialize the model
|
56 |
model = SimpleRNN(input_size, hidden_size, output_size)
|
57 |
-
criterion = nn.CrossEntropyLoss()
|
58 |
-
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
59 |
-
for epoch in range(epochs):
|
60 |
-
try:
|
61 |
-
total_loss = 0
|
62 |
-
hidden = torch.zeros(1, 1, hidden_size)
|
63 |
-
|
64 |
-
pbar = tqdm(train_data, desc=f"Epoch={epoch}, Loss=N/A")
|
65 |
-
count = 0
|
66 |
-
for input_seq, target in pbar:
|
67 |
-
count += 1
|
68 |
-
optimizer.zero_grad()
|
69 |
-
output, hidden = model(input_seq, hidden.detach())
|
70 |
-
loss = criterion(output, torch.tensor([target]))
|
71 |
-
loss.backward()
|
72 |
-
optimizer.step()
|
73 |
-
total_loss += loss.item()
|
74 |
-
pbar.desc = f"Epoch={epoch}, Loss={total_loss / count:.12f}"
|
75 |
-
|
76 |
-
pbar.close()
|
77 |
-
time.sleep(1)
|
78 |
-
except KeyboardInterrupt:
|
79 |
-
break
|
80 |
-
|
81 |
-
hidden = torch.zeros(1, 1, hidden_size)
|
82 |
-
output, hidden = model(input_seq, hidden.detach())
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
model.eval()
|
93 |
-
hidden = torch.zeros(1, 1, hidden_size)
|
94 |
-
input_seq = torch.tensor([char_to_idx[ch] for ch in start_text])
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
input_seq = torch.cat((input_seq[1:], torch.tensor([predicted_idx])))
|
102 |
-
|
103 |
-
return generated_text
|
104 |
-
|
105 |
-
# Generate some text
|
106 |
-
|
107 |
-
while True:
|
108 |
-
print("LLM Output: ", generate_text(input("Ask LLM: ")))
|
|
|
13 |
idx_to_char = {i: ch for i, ch in enumerate(chars)}
|
14 |
|
15 |
# Model parameters
|
16 |
+
parameters = json.loads(open("parameter.json").read())
|
17 |
input_size = len(chars)
|
18 |
+
hidden_size = parameters["hidden_size"]
|
19 |
output_size = len(chars)
|
20 |
+
sequence_length = parameters["sequence_length"]
|
21 |
epochs = 1000
|
22 |
+
learning_rate = parameters["learning_rate"]
|
23 |
+
model_path = parameters["model_path"]
|
24 |
|
25 |
# Create training data (input-output pairs)
|
26 |
train_data = []
|
|
|
43 |
out = self.fc(out[:, -1, :]) # Take last time step's output
|
44 |
return out, hidden
|
45 |
|
|
|
46 |
if os.path.exists(model_path):
|
47 |
model = torch.load(model_path, weights_only=False)
|
48 |
+
print("Loaded pre-trained model. Continue training...")
|
|
|
|
|
|
|
|
|
49 |
else:
|
50 |
print("Training new model...")
|
|
|
51 |
model = SimpleRNN(input_size, hidden_size, output_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
criterion = nn.CrossEntropyLoss()
|
54 |
+
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
55 |
+
for epoch in range(epochs):
|
56 |
+
try:
|
57 |
+
total_loss = 0
|
58 |
+
hidden = torch.zeros(1, 1, hidden_size)
|
59 |
+
|
60 |
+
pbar = tqdm(train_data, desc=f"Epoch={epoch}, Loss=N/A")
|
61 |
+
count = 0
|
62 |
+
for input_seq, target in pbar:
|
63 |
+
count += 1
|
64 |
+
optimizer.zero_grad()
|
65 |
+
output, hidden = model(input_seq, hidden.detach())
|
66 |
+
loss = criterion(output, torch.tensor([target]))
|
67 |
+
loss.backward()
|
68 |
+
optimizer.step()
|
69 |
+
total_loss += loss.item()
|
70 |
+
pbar.desc = f"Epoch={epoch}, Loss={total_loss / count:.12f}"
|
71 |
+
|
72 |
+
pbar.close()
|
73 |
+
time.sleep(1)
|
74 |
+
except KeyboardInterrupt:
|
75 |
+
break
|
76 |
|
77 |
+
hidden = torch.zeros(1, 1, hidden_size)
|
78 |
+
output, hidden = model(input_seq, hidden.detach())
|
|
|
|
|
|
|
79 |
|
80 |
+
# Save the trained model
|
81 |
+
torch.save(model, model_path)
|
82 |
+
with open("vocab.json", "w") as f:
|
83 |
+
f.write(json.dumps(chars))
|
84 |
+
print("Model saved.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|