File size: 1,663 Bytes
828992f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import sys
import time
import math
import faiss
import torch

import numpy as np

from colbert.indexing.faiss_index_gpu import FaissIndexGPU
from colbert.utils.utils import print_message


class FaissIndex():
    def __init__(self, dim, partitions):
        self.dim = dim
        self.partitions = partitions

        self.gpu = FaissIndexGPU()
        self.quantizer, self.index = self._create_index()
        self.offset = 0

    def _create_index(self):
        quantizer = faiss.IndexFlatL2(self.dim)  # faiss.IndexHNSWFlat(dim, 32)
        index = faiss.IndexIVFPQ(quantizer, self.dim, self.partitions, 16, 8)

        return quantizer, index

    def train(self, train_data):
        print_message(f"#> Training now (using {self.gpu.ngpu} GPUs)...")

        if self.gpu.ngpu > 0:
            self.gpu.training_initialize(self.index, self.quantizer)

        s = time.time()
        self.index.train(train_data)
        print(time.time() - s)

        if self.gpu.ngpu > 0:
            self.gpu.training_finalize()

    def add(self, data):
        print_message(f"Add data with shape {data.shape} (offset = {self.offset})..")

        if self.gpu.ngpu > 0 and self.offset == 0:
            self.gpu.adding_initialize(self.index)

        if self.gpu.ngpu > 0:
            self.gpu.add(self.index, data, self.offset)
        else:
            self.index.add(data)

        self.offset += data.shape[0]

    def save(self, output_path):
        print_message(f"Writing index to {output_path} ...")

        self.index.nprobe = 10  # just a default
        faiss.write_index(self.index, output_path)