--- license: apache-2.0 language: - en base_model: - Qwen/Qwen2.5-Coder-32B-Instruct library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder - html - javascript - css - tailwindcss - frontend - web-development - ViCoder-html-32B-preview - ViCoder-html - ViCoder - ViCoder-html-preview - vichar ai labs - vichar ai - strive ai labs llp - strive ai labs - vichar.io pipeline_tag: text-generation ---

ViCoder-html-32B-preview Logo

ViCoder-html-32B-preview

๐Ÿš€ A powerful HTML/CSS/JS sketching model powered by Qwen2.5-Coder-32B-Instruct ๐Ÿš€

Developed by Vichar AI | Hugging Face Profile
Licensed under Apache 2.0

--- ### ๐Ÿ’ก What is ViCoder-html-32B-preview? **ViCoder-html-32B-preview** is a preview model in the **ViCoder** series from Vichar AI โ€” a line of models specialized in **code generation**. This model focuses specifically on sketching single-page websites, such as landing pages and dashboards, using using: - ๐Ÿง  **HTML** for semantic structure - ๐ŸŽจ **Tailwind CSS** for modern, utility-first styling - โš™๏ธ **JavaScript** for interactivity and basic dynamic behavior This model is ideal for: - **Web Developers:** Quickly scaffolding dashboards or page layouts. - **Frontend Engineers:** Prototyping UIs and exploring design variations. - **Designers:** Turning textual mockups into initial code sketches. - **Educators & Students:** Learning and experimenting with HTML, Tailwind CSS, and JavaScript in a practical context. > โš ๏ธ **Note:** This is a **preview** version. It demonstrates core capabilities but is still under active development. A more refined and robust production release is planned. Stay updated via vichar.io or follow VicharAI on Hugging Face! --- ### ๐Ÿ› ๏ธ Model Details | Property | Value | | :--------------- | :------------------------------------------------------------------------------------------ | | **Model Type** | Code Generation (Instruction-tuned Language Model) | | **Base Model** | [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) | | **Developed by** | [Vichar AI](https://vichar.io) ([HF Profile](https://huggingface.co/VicharAI)) | | **Languages** | Primarily HTML, Tailwind CSS, JavaScript. Understands English instructions. | | **Training Data**| Proprietary curated dataset focusing on high-quality web components and pages. | | **License** | [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) | | **Library** | ๐Ÿค— Transformers | | **Contact** | Visit [vichar.io](https://vichar.io) or use HF Discussions | --- ### ๐Ÿงฑ GGUF Quantized Versions Quantized versions of **ViCoder-html-32B-preview** in GGUF format are available for efficient local inference using [llama.cpp](https://github.com/ggerganov/llama.cpp), [LM Studio](https://lmstudio.ai/), or [Ollama](https://ollama.com/). You can find them here: - ๐Ÿ”— [GGUF Quantizations on Hugging Face](https://huggingface.co/VicharAI/ViCoder-html-32B-preview-GGUF) These quantized variants (Q3_K_M, Q4_K_M, Q6_K, Q8_0) are useful for running the model on lower-memory hardware or for embedding in desktop/web applications. --- ### โšก Example Usage Use the `transformers` library pipeline for easy text generation. Ensure you have `transformers`, `torch`, and `accelerate` installed. ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch # Define model ID model_id = "VicharAI/ViCoder-html-32B-preview" # Load tokenizer and model # Use bfloat16 for faster inference if your GPU supports it tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, # Or torch.float16 if bfloat16 is not supported device_map="auto" # Automatically distribute across available GPUs/CPU ) messages = [ {"role": "user", "content": "A modern, sleek landing page for a company focusing on open-source LLM solutions"}, ] inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, return_tensors = "pt", ).to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer, skip_prompt = True) _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 16000, use_cache = True, temperature = 0.7, min_p = 0.1, repetition_penalty=1.1) ``` --- ### โœจ Output Sample ```html Our Love Story - Surprise Website